【题目】教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:25)能喝到不小于70℃的水,则接通电源的时间可以是当天上午的( ).
A.7:00 B.7:10 C.7:25 D.7:35
【答案】B.
【解析】
试题首先应用待定系数法求出两个函数的解析式,即y=10x+30(0≤x≤7),,所以饮水机的一个循环周期为分钟.当y=70时,10x+30=70,解得x=4,,解得x=10,即在每个循环周期内,在4≤x≤10时间段内水温不低于70℃.
逐一分析如下:选项A:7:00到8:25之间有85分钟,,不在4≤x≤10时间段内,故不可行;
选项B:7:10到8:25之间有75分钟,,在4≤x≤10时间段内,故可行;
选项C:7:25到8:25之间有60分钟,,不在4≤x≤10时间段内,故不可行;
选项D:7:35到8:25之间有50分钟,,不在4≤x≤10时间段内,故不可行;
综上所述,只有7:10符合题意.
故选:B.
科目:初中数学 来源: 题型:
【题目】甲、乙两位同学5次数学选拔赛的成绩统计如下表,他们5次考试的总成绩相同,请同学们完成下列问题:
第1 次 | 第2 次 | 第 3次 | 第 4次 | 第5 次 | |
甲成绩 | 90 | 40 | 70 | 40 | 60 |
乙成绩 | 70 | 50 | 70 | 70 |
(1)统计表中,求的值,甲同学成绩的极差为多少;
(2)小颖计算了甲同学的成绩平均数为60,方差是[(90﹣60)2+(40﹣60)2+(70﹣60)2+(40﹣60)2+(60﹣60)2]=360.
请你求出乙同学成绩的平均数和方差;
(3)从平均数和方差的角度分析,甲乙两位同学谁的成绩更稳定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.
(1)求证:DE=EF;
(2)判断BD和CF的数量关系,并说明理由;
(3)若AB=3,AE=,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知圆柱体的体积不变,当它的高h=12.5cm时,底面积S=20cm2.
(1)求S与h之间的函数解析式;
(2)画出函数图象;
(3)当圆柱体的高为5cm,7cm时,比较底面积S的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形纸片ABCD中,已知AB=2,BC=,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE翻折,得到多边形AB′C′E,点B、C的对应点分别为点B′、C′.
(1)当点E与点C重合时,求DF的长;
(2)若B′C′分别交边AD,CD于点F,G,且∠DAE=22.5°,求△DFG的面积;
(3)如果点M为CD的中点,那么在点E从点C移动到点D的过程中,求C′M的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象交于点A(﹣1,3)、B(n,﹣1).
(1)求反比例函数的解析式;
(2)当y1>y2时,直接写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.
(1)指出旋转中心,并求出旋转的度数;
(2)求出∠BAE的度数和AE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com