精英家教网 > 初中数学 > 题目详情
1.如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.
(1)求抛物线的解析式;
(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;
(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;
(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.

分析 (1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式,得到关于a、b的方程组,求得a、b的值,从而可得到抛物线的解析式;
(2)依据同角的余角相等证明∠BDC=∠DE0,然后再依据AAS证明△BDC≌△DEO,从而得到OD=AO=1,于是可求得点D的坐标;
(3)作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.先求得抛物线的对称轴方程,从而得到点B′的坐标,由轴对称的性质可知当点D、M、B′在一条直线上时,△BMD的周长有最小值,依据两点间的距离公式求得BD和B′D的长度,从而得到三角形的周长最小值,然后依据待定系数法求得D、B′的解析式,然后将点M的横坐标代入可求得点M的纵坐标;
(4)过点F作FG⊥x轴,垂足为G.设点F(a,-2a2+6a),则OG=a,FG=-2a2+6a.然后依据S△FDA=S梯形DOGF-S△ODA-S△AGF的三角形的面积与a的函数关系式,然后依据二次函数的性质求解即可.

解答 解:(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式得:$\left\{\begin{array}{l}{a+b=4}\\{9a+3b=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-2}\\{b=6}\end{array}\right.$,
抛物线的解析式为y=-2x2+6x.
(2)如图1所示;

∵BD⊥DE,
∴∠BDE=90°.
∴∠BDC+∠EDO=90°.
又∵∠ODE+∠DEO=90°,
∴∠BDC=∠DE0.
在△BDC和△DOE中,$\left\{\begin{array}{l}{∠BCD=∠DOE=90°}\\{∠BDC=∠DEO}\\{DB=DE}\end{array}\right.$,
∴△BDC≌△DEO.
∴OD=AO=1.
∴D(0,1).
(3)如图2所示:作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.

∵x=-$\frac{b}{2a}$=$\frac{3}{2}$,
∴点B′的坐标为(2,4).
∵点B与点B′关于x=$\frac{3}{2}$对称,
∴MB=B′M.
∴DM+MB=DM+MB′.
∴当点D、M、B′在一条直线上时,MD+MB有最小值(即△BMD的周长有最小值).
∵由两点间的距离公式可知:BD=$\sqrt{{1}^{2}+(4-1)^{2}}$=$\sqrt{10}$,DB′=$\sqrt{{2}^{2}+(4-1)^{2}}$=$\sqrt{13}$,
∴△BDM的最小值=$\sqrt{10}$+$\sqrt{13}$.
设直线B′D的解析式为y=kx+b.
将点D、B′的坐标代入得:$\left\{\begin{array}{l}{b=1}\\{2k+b=4}\end{array}\right.$,
解得:k=$\frac{3}{2}$,b=1.
∴直线DB′的解析式为y=$\frac{3}{2}$x+1.
将x=$\frac{3}{2}$代入得:y=$\frac{13}{4}$.
∴M($\frac{3}{2}$,$\frac{13}{4}$).
(4)如图3所示:过点F作FG⊥x轴,垂足为G.

设点P(a,-2a2+6a),则OG=a,PG=-2a2+6a.
∵S梯形DOGP=$\frac{1}{2}$(OD+PG)•OG=$\frac{1}{2}$(-2a2+6a+1)×a=-a3+3a2+$\frac{1}{2}$a,S△ODA=$\frac{1}{2}$OD•OA=$\frac{1}{2}$×1×1=$\frac{1}{2}$,S△AGP=$\frac{1}{2}$AG•PG=-a3+4a2-3a,
∴S△PDA=S梯形DOGP-S△ODA-S△AGP=-a2+$\frac{7}{2}$a-$\frac{1}{2}$.
∴当a=$\frac{7}{4}$时,S△PDA的最大值为$\frac{41}{16}$.
∴点P的坐标为($\frac{7}{4}$,$\frac{35}{8}$).

点评 本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数、一次函数的解析式、全等三角形的性质和判定、轴对称的性质、二次函数的图象和性质得到△FDA的面积与a的函数关系式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的
信息解答下列问题:
(1)本次抽样测试的学生人数是400;
(2)扇形图中∠α的度数是108°,并把条形统计图补充完整;
(3)对A,B,C,D四个等级依次赋分为90,75,65,55(单位:分),该市九年级共有学生9000名,如果全部参加这次体育测试,则测试等级为D的约有900人;该市九年级学生体育平均成绩约为75.5分.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.在△ABC中,P为边AB上一点.
(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;
(2)若M为CP的中点,AC=2.
①如图2,若∠PBM=∠ACP,AB=3,求BP的长;
②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1 O1的对角线交BD于点O2,同样以AB、AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC2016O2016的面积为(  )
A.$\frac{5}{{2}^{2015}}$B.$\frac{5}{{2}^{2016}}$C.$\frac{5}{{2}^{2014}}$D.$\frac{5}{{2}^{2017}}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:
甲:b-a<0
乙:a+b>0
丙:|a|<|b|
丁:$\frac{b}{a}$>0
其中正确的是(  )
A.甲乙B.丙丁C.甲丙D.乙丁

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC;
(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2
(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在平面直角坐标系中,已知抛物线y=x2+bx+c的顶点M的坐标为(-1,-4),且与x轴交于点A,点B(点A在点B的左边),与y轴交于点C.
(1)填空:b=2,c=-3,直线AC的解析式为y=-x-3;
(2)直线x=t与x轴相交于点H.
①当t=-3时得到直线AN(如图1),点D为直线AC下方抛物线上一点,若∠COD=∠MAN,求出此时点D的坐标;
②当-3<t<-1时(如图2),直线x=t与线段AC,AM和抛物线分别相交于点E,F,P.试证明线段HE,EF,FP总能组成等腰三角形;如果此等腰三角形底角的余弦值为$\frac{3}{5}$,求此时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.先化简(a+1)(a-1)+a(1-a)-a,再根据化简结果,你发现该代数式的值与a的取值有什么关系?(不必说理).

查看答案和解析>>

同步练习册答案