精英家教网 > 初中数学 > 题目详情
15、如图,四边形ABCD是矩形,A、B两点在x轴的正半轴上,C、D两点在抛物线y=-x2+6x上.设OA=m(0<m<3),矩形ABCD的周长为l,则l与m的函数解析式为
l=-2m2+8m+12
分析:求l与m的函数解析式就是把m当作已知量,求l,先求AD,它的长就是D点的纵坐标,再把D点纵坐标代入函数解析式求C点横坐标,C点横坐标与D点横坐标的差就是线段CD的长,用l=2(AD+CD),建立函数关系式.
解答:解:把x=m代入抛物线y=-x2+6x中,得AD=-m2+6m
把y=-m2+6m代入抛物线y=-x2+6x中,得
-m2+6m=-x2+6x
解得x1=m,x2=6-m
∴C的横坐标是6-m,故AB=6-m-m=6-2m
∴矩形的周长是l=2(-m2+6m)+2(6-2m)
即l=-2m2+8m+12.
点评:求函数解析式的过程就是一个列代数式的过程,求线段的长度的问题一般要转化为求点的坐标的问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案