【题目】如图,△ABC中,E是BC的中点,AD平分∠BAC,EF∥AD交AC于F,若AB=11,AC=15,求FC的长.
【答案】13
【解析】
过点B作BM∥AD交CA的延长线于点M,则可证明△ABM为等腰三角形(AM=AB),根据平行线分线段成比例定理和点E为线段BC的中点可得出FC=MF,进而可得出FC=CM,代入CM=CA+AM=CA+AB即可得出结论.
过点B作BM∥AD交CA的延长线于点M,如图1所示.
∵AD是∠BAC的平分线,∴∠CAD=∠BAD,
∵BM∥AD,∴∠M=∠CAD,∠BAD=∠ABM,∴∠M=∠ABM,∴AM=AB.
∵EF∥AD,BM∥AD,∴EF∥BM,∴EC:BE=FC:MF.∵E是BC中点,∴FC=MF,∴FC=CM=(CA+AM)=(CA+AB)=(15+11)=13.
故选C.
科目:初中数学 来源: 题型:
【题目】观察下面的三行单项式
x,2x2,4x3,8x4,16x5…①
﹣2x,4x2,﹣8x3,16x4,﹣32x5…②
2x,﹣3x2,5x3,﹣9x4,17x5…③
根据你发现的规律,完成以下各题:
(1)第①行第8个单项式为 ;第②行第2020个单项式为 .
(2)第③行第n个单项式为 .
(3)取每行的第9个单项式,令这三个单项式的和为A.计算当x=时,256(A+)的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( )
A. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
C. 暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
D. 掷一个质地均匀的正六面体骰子,向上的面点数是4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD∽四边形GFEH,且∠A=∠G=70°,∠B=55°,∠E=120°,DC=20,HE=15,HG=21.求∠D,∠F的大小和AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.
(1)求证:△ACB∽△CDB;
(2)若⊙O的半径为1,∠BCP=30°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图,ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.
(1)求证:四边形BEDF是平行四边形;
(2)若AB⊥AC,AB=4,BC=,当四边形BEDF为矩形时,求线段AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列方程是关于x的一元二次方程的是( )
A. ax2+bx+c=0 B. =2 C. x2+2x=y2-1 D. 3(x+1)2=2(x+1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠CBD、∠BCE是△ABC的外角,BP平分∠ABC,CP平分∠ACB,BQ平分∠CBD,CQ平分∠BCE.
(1)∠PBQ的度数是 ,∠PCQ的度数是 ;
(2)若∠A=70°,求∠P和∠Q的度数;
(3)若∠A=α,则∠P= ,∠Q= (用含α的代数式表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com