精英家教网 > 初中数学 > 题目详情
3.先化简,再求值:($\frac{{x}^{2}}{x-1}$-x+1)+$\frac{4{x}^{2}-4x+1}{1-x}$,其中x=sin60°+tan45°.

分析 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.

解答 解:原式=$\frac{{x}^{2}-(x-1)^{2}}{x-1}$÷$\frac{(2x-1)^{2}}{-(x-1)}$=-$\frac{2x-1}{x-1}$•$\frac{x-1}{(2x-1)^{2}}$=-$\frac{1}{2x-1}$,
当x=sin60°+tan45°═$\frac{\sqrt{3}}{2}$+1时,原式=-$\frac{1}{\sqrt{3}+1}$=-$\frac{1-\sqrt{3}}{2}$.

点评 此题考查了分式的化简求值,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.在⊙O中,AB为直径,C为⊙O上一点.
(Ⅰ)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=32°,求∠P的大小;
(Ⅱ)如图②,D为优弧ADC上一点,且DO的延长线经过AC的中点E,连接DC与AB相交于点P,若∠CAB=16°,求∠DPA的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,矩形ABCD中,AB=nAD,点E,F分别在边AB,AD上且不与顶点A,B,D重合,∠AEF=∠BCE,⊙O过A,E,F三点.
(1)求证:⊙O与CE相切与点E;
(2)如图1,若AF=2FD且∠AEF=30°,求n的值;
(3)如图2.若EF=EC且⊙O与边CD相切,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,抛物线y=$\frac{1}{4}$x2+$\frac{k-2}{4}$x-$\frac{k}{2}$(k>0)与x轴交于点A、B,点A在点B的右边,与y轴交于点C

(1)如图1,若∠ACB=90°
①求k的值;
②点P为x轴上方抛物线上一点,且点P到直线BC的距离为$\sqrt{5}$,则点P的坐标为(-4-$\sqrt{26}$,$\frac{1+\sqrt{26}}{2}$)(请直接写出结果)
(2)如图2,当k=2时,过原点O的任一直线y=mx(m≠0)交抛物线于点E、F(点E在点F的左边)
①若OF=2OE,求直线y=mx的解析式;
②求$\frac{1}{OE}$+$\frac{1}{OF}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2$\sqrt{3}$,则阴影部分图形的面积为(  )
A.B.C.$\frac{2π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.先化简,再求值:$\frac{{{x^2}+x}}{{{x^2}-2x+1}}$÷($\frac{2}{x-1}$-$\frac{1}{x}}$),其中x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到1cm)(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,$\sqrt{2}$≈1.414)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长为6m,8m,现要将其扩建成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩建后的等腰三角形花圃的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,AB∥CD,CB平分∠ABD,若∠C=35°,则∠D的度数为110°.

查看答案和解析>>

同步练习册答案