ÔĶÁÏÂÁвÄÁÏ£ºÈô¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸öʵÊý¸ù·Ö±ðΪx1¡¢x2£¬Ôòx1+x2=-
b
a
£¬x1x2=
c
a
£®
½â¾öÏÂÃæÎÊÌ⣺ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¨2x+n£©2=4xÓÐÁ½¸ö·ÇÁã²»µÈʵÊý¸ùx1¡¢x2£¬Éèm=
1
x1
+
1
x2
£®
£¨1£©ÇónµÄÈ¡Öµ·¶Î§£»
£¨2£©ÊÔÓùØÓÚnµÄ´úÊýʽ±íʾ³öm£»
£¨3£©ÊÇ·ñ´æÔÚÕâÑùµÄnÖµ£¬Ê¹mµÄÖµµÈÓÚ1£¿Èô´æÔÚ£¬Çó³öÕâÑùµÄËùÓÐnµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓɹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¨2x+n£©2=4xÓÐÁ½¸ö·ÇÁã²»µÈʵÊý¸ù£¬¼´¿ÉµÃ¡÷=[4£¨n-1£©]2-4¡Á4n2£¾0ÇÒn2¡Ù0£¬¼Ì¶øÇóµÃnµÄÈ¡Öµ·¶Î§£»
£¨2£©ÓÉx1£¬x2ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì4x2+4£¨n-1£©x+n2=0µÄÁ½¸öʵÊý¸ù£¬¸ù¾Ý¸ùÓëϵÊýµÄ¹Øϵ¿ÉµÃ£ºx1+x2=-
4(n-1)
4
=1-n£¬x1•x2=
n2
4
£¬ÓÖÓÉm=
1
x1
+
1
x2
£¬¼´¿ÉÇóµÃ´ð°¸£»
£¨3£©µ±m=1ʱ£¬¼´
4(1-n)
n2
=1£¬½â´Ë·½³Ì¼´¿ÉÇóµÃnµÄÖµ£¬ÓÖÓÉ£¨1£©ÖÐnµÄÈ¡Öµ·¶Î§ÊÇn£¼
1
2
£¬ÇÒn¡Ù0£¬¼´¿ÉÇóµÃnµÄÖµ£®
½â´ð£º½â£º£¨1£©½«·½³ÌÕûÀíµÃ£º4x2+4£¨n-1£©x+n2=0£¬
¡ß·½³ÌÓÐÁ½¸ö·ÇÁã²»µÈʵÊý¸ù£¬
¡à¡÷=[4£¨n-1£©]2-4¡Á4n2£¾0ÇÒn2¡Ù0£¬
½âµÃn£¼
1
2
£¬ÇÒn¡Ù0
¡ànµÄÈ¡Öµ·¶Î§ÊÇn£¼
1
2
£¬ÇÒn¡Ù0£»

£¨2£©¡ßx1£¬x2ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì4x2+4£¨n-1£©x+n2=0µÄÁ½¸öʵÊý¸ù£¬
¡àx1+x2=-
4(n-1)
4
=1-n£¬x1•x2=
n2
4
£¬
¡àm=
1
x1
+
1
x2
=
x1+x2
x1x2
=
1-n
n2
4
=
4(1-n)
n2
£»

£¨3£©´æÔÚ£®
ÀíÓÉ£ºµ±m=1ʱ£¬¼´
4(1-n)
n2
=1£¬
ÕûÀíµÃ£ºn2+4n-4=0£¬
½âµÃ£ºn=-2¡À2
2
£¬
¡ßn£¼
1
2
£¬
¡àn=-2+2
2
²»·ûºÏÌâÒ⣬ÉáÈ¥£»
¡àʹm=1µÄÖµ´æÔÚ£¬´Ëʱn=-2-2
2
£®
µãÆÀ£º´ËÌ⿼²éÁËÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹Øϵ¡¢¸ùµÄÅбðʽµÄÓ¦ÓÃÒÔ¼°Ò»Ôª¶þ´Î·½³ÌµÄ½â·¨£®´ËÌâÄѶÈÊÊÖУ¬×¢ÒâÕÆÎÕÈç¹ûx1£¬x2ÊÇÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0µÄÁ½¸ù£¬ÄÇôÓÐx1+x2=-
b
a
£¬x1x2=
c
a
µÄÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏ£ºÈô¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸öʵÊý¸ù·Ö±ðΪx1£¬x2£¬Ôòx1+x2=-
b
a
£¬x1x2=
c
a
£®
½â¾öÏÂÁÐÎÊÌ⣺
ÒÑÖª£ºa£¬b£¬c¾ùΪ·ÇÁãʵÊý£¬ÇÒa£¾b£¾c£¬¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0ÓÐÁ½¸öʵÊý¸ù£¬ÆäÖÐÒ»¸ùΪ2£®
£¨1£©Ìî¿Õ£º4a+2b+c
 
0£¬a
 
0£¬c
 
0£»£¨Ìî¡°£¾¡±£¬¡°£¼¡±»ò¡°=¡±£©
£¨2£©ÀûÓÃÔĶÁ²ÄÁÏÖеĽáÂÛÖ±½Óд³ö·½³Ìax2+bx+c=0µÄÁíÒ»¸öʵÊý¸ù£¨Óú¬a£¬cµÄ´úÊýʽ±íʾ£©£»
£¨3£©ÈôʵÊýmʹ´úÊýʽam2+bm+cµÄֵСÓÚ0£¬ÎÊ£ºµ±x=m+5ʱ£¬´úÊýʽax2+bx+cµÄÖµÊÇ·ñΪÕýÊý£¿Ð´³öÄãµÄ½áÂÛ²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏ£º
Èô¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸öʵÊý¸ù·Ö±ðΪx1£¬x2£¬Ôòx1+x2=-
b
a
£¬x1x2=
c
a
£®
½â¾öÏÂÁÐÎÊÌ⣺
ÒÑÖª£ºa£¬b£¬c¾ùΪ·ÇÁãʵÊý£¬ÇÒa£¾b£¾c£¬¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0ÓÐÁ½¸öʵÊý¸ù£¬ÆäÖÐÒ»¸ùΪ2£®
£¨1£©Ìî¿Õ£º4a+2b+c
=
=
0£¬a
£¾
£¾
0£¬c
£¼
£¼
0£»£¨Ìî¡°£¾¡±£¬¡°£¼¡±»ò¡°=¡±£©
£¨2£©ÀûÓÃÔĶÁ²ÄÁÏÖеĽáÂÛÖ±½Óд³ö·½³Ìax2+bx+c=0µÄÁíÒ»¸öʵÊý¸ù£¨Óú¬a£¬cµÄ´úÊýʽ±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

£¨±¾Ìâ8·Ö£©ÔĶÁÏÂÁвÄÁÏ£ºÈô¹ØÓÚµÄÒ»Ôª¶þ´Î·½³Ì µÄÁ½¸öʵÊý¸ù·Ö±ðΪ¡¢£¬Ôò£¬
½â¾öÏÂÃæÎÊÌ⣺ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³ÌÓÐÁ½¸ö·ÇÁã²»µÈʵÊý¸ù¡¢£¬Éè.
¡¾Ð¡Ìâ1¡¿(1) ÇóµÄÈ¡Öµ·¶Î§£»
¡¾Ð¡Ìâ2¡¿(2) ÊÔÓùØÓڵĴúÊýʽ±íʾ³ö£»
¡¾Ð¡Ìâ3¡¿(3) ÊÇ·ñ´æÔÚÕâÑùµÄÖµ£¬Ê¹µÄÖµµÈÓÚ1£¿Èô´æÔÚ£¬Çó³öÕâÑùµÄËùÓеÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2011Äê±±¾©ÊÐÎ÷³ÇÇøÖп¼Êýѧ¶þÄ£ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÔĶÁÏÂÁвÄÁÏ£ºÈô¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸öʵÊý¸ù·Ö±ðΪx1£¬x2£¬Ôò£¬£®
½â¾öÏÂÁÐÎÊÌ⣺
ÒÑÖª£ºa£¬b£¬c¾ùΪ·ÇÁãʵÊý£¬ÇÒa£¾b£¾c£¬¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0ÓÐÁ½¸öʵÊý¸ù£¬ÆäÖÐÒ»¸ùΪ2£®
£¨1£©Ìî¿Õ£º4a+2b+c______0£¬a______0£¬c______0£»£¨Ìî¡°£¾¡±£¬¡°£¼¡±»ò¡°=¡±£©
£¨2£©ÀûÓÃÔĶÁ²ÄÁÏÖеĽáÂÛÖ±½Óд³ö·½³Ìax2+bx+c=0µÄÁíÒ»¸öʵÊý¸ù£¨Óú¬a£¬cµÄ´úÊýʽ±íʾ£©£»
£¨3£©ÈôʵÊýmʹ´úÊýʽam2+bm+cµÄֵСÓÚ0£¬ÎÊ£ºµ±x=m+5ʱ£¬´úÊýʽax2+bx+cµÄÖµÊÇ·ñΪÕýÊý£¿Ð´³öÄãµÄ½áÂÛ²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸