精英家教网 > 初中数学 > 题目详情

【题目】如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.

(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2 ,求BC的长.

【答案】
(1)

证明:连接OB,如图所示:

∵AC是⊙O的直径,

∴∠ABC=90°,

∴∠C+∠BAC=90°,

∵OA=OB,

∴∠BAC=∠OBA,

∵∠PBA=∠C,

∴∠PBA+∠OBA=90°,

即PB⊥OB,

∴PB是⊙O的切线;


(2)

解:

∵⊙O的半径为2

∴OB=2 ,AC=4

∵OP∥BC,

∴∠C=∠BOP,

又∵∠ABC=∠PBO=90°,

∴△ABC∽△PBO,

∴BC=2.


【解析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;熟练掌握圆周角定理、切线的判定是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H.
(1)直接写出点E的坐标:
(2)求证:AG=CH.
(3)如图2,以O为圆心,OC为半径的圆弧交OA与D,若直线GH与弧CD所在的圆相切于矩形内一点F,求直线GH的函数关系式.
(4)在(3)的结论下,梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,求⊙P的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】任取不等式组 的一个整数解,则能使关于x的方程:2x+k=﹣1的解为非负数的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+2x+6(a≠0)交x轴与A,B两点(点A在点B左侧),将直尺WXYZ与x轴负方向成45°放置,边WZ经过抛物线上的点C(4,m),与抛物线的另一交点为点D,直尺被x轴截得的线段EF=2,且△CEF的面积为6.

(1)求该抛物线的解析式;
(2)探究:在直线AC上方的抛物线上是否存在一点P,使得△ACP的面积最大?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由.
(3)将直尺以每秒2个单位的速度沿x轴向左平移,设平移的时间为t秒,平移后的直尺为W′X′Y′Z′,其中边X′Y′所在的直线与x轴交于点M,与抛物线的其中一个交点为点N,请直接写出当t为何值时,可使得以C、D、M、N为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A的坐标为(﹣4,0),直线y= x+n与坐标轴交于点B、C,连接AC,如果∠ACD=90°,则n的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是(  )

A.2n+1
B.n2﹣1
C.n2+2n
D.5n﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据: ≈1.732,结果精确到0.1)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加快城市群的建设与发展,在A,B两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的
(1)求建成后的城际铁路在A,B两地的运行时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是(  )

A.15°
B.30°
C.60°
D.75°

查看答案和解析>>

同步练习册答案