精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD是平行四边形,点E、F是四边形ABCD的对角线AC上的两点,DF∥BE.求证:AE=CF.
考点:平行四边形的性质,全等三角形的判定与性质
专题:证明题
分析:根据平行四边形性质得出DC=AB,DC∥AB,推出∠DCF=∠BAE,求出∠DFC=∠BEA,证出△DFC≌△BEA即可.
解答:证明:∵四边形ABCD是平行四边形,
∴DC=AB,DC∥AB,
∴∠DCF=∠BAE,
∵DF∥BE,
∴∠DFE=∠BEF,
∵∠DFE+∠DFC=180°,∠BEF+∠AEB=180°,
∴∠DFC=∠BEA,
在△DFC和△BEA中
∠DCF=∠BAE
∠DFC=∠BEA
DC=AB

∴△DFC≌△BEA(AAS),
∴AE=CF.
点评:本题考查了平行四边形性质,平行线的性质,全等三角形的性质和判定的应用,主要考查学生的推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,把一底角为45°的等腰梯形放在平面直角坐标系中,已知梯形腰长为2
2
,AB=2,求A、B、C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

王老师带领团员若干人到黄鹤楼浏览,现联系了两辆车的车主.甲车主给出的优惠条件是:学生9折,老师不收费;乙车主给出的优惠条件是:包括老师在内,全部按8折优惠.如果每张车票的价格是40元,那么乘哪家车主的车比较合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
32012-32011
32011-32010

查看答案和解析>>

科目:初中数学 来源: 题型:

已知A=-2ab,B=3ab(a+b),C=2a2b-3ab2,且a、b异号,a为负整数,且绝对值最小,|b|=
1
2
,求3A•B-
1
2
A•C的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD、CE是△ABC的高,且AB=2BC.则AD与CE有怎样的数量关系?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
(1)
a-1
a+2
a2+4a+4
a-1
-2
(2)
x-1
x2+x
÷
x2-2x+1
x2-1
-
1
x

(3)(1-
1
1-a
)(
1
a2
-1)

查看答案和解析>>

科目:初中数学 来源: 题型:

若三元一次方程组
x+y=5
x+z=-1
y+z=-2
的解使ax+2y-z=0,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

方程组
2
x+
3
y=3
2
3
x+
2
y=2
3
的解是
 

查看答案和解析>>

同步练习册答案