精英家教网 > 初中数学 > 题目详情
16.若a,b表示有理数,且a=-b,那么在数轴上表示a与数b的点到原点的距离(  )
A.表示数a的点到原点的距离较远B.表示数b的点到原点的距离较远
C.相等D.无法比较

分析 利用相反数的定义判断即可.

解答 解:若a、b表示有理数,且a=-b,那么在数轴上表示数a与数b的点到原点的距离一样远,
故选:C.

点评 此题考查了数轴,以及相反数,熟练掌握相反数的定义是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,矩形ABCD中,AB=$\sqrt{3}$,BC=9,点E在BC边上,BE=4,点F,G在线段AD上运动(点F在点G的左侧),且始终保持FG=BE.
(1)求证:四边形BEGF是平行四边形;
(2)当四边形BEGF是菱形时,求线段DG的长;
(3)将△BEF沿EF折叠得到△B′EF,连结B′G(如图2),当以点B′,G,E,F为顶点的四边形是矩形时,直接写出线段DG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.化简:$\sqrt{24}$=2$\sqrt{6}$;-$\sqrt{4\frac{1}{4}}$=-$\frac{\sqrt{17}}{2}$;$\sqrt{\frac{{{a^2}b}}{{4{c^2}}}}$=|$\frac{a}{2c}$|$\sqrt{b}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.若两个相似多边形对应边的比为1:$\sqrt{3}$,则面积之比为(  )
A.1:3B.3:1C.1:$\sqrt{3}$D.$\sqrt{3}$:1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.阅读理解
(一)阅读与思考
通过解方程(组)使问题得到解决的思维方式就是方程思想,刚学过的《勾股定理》及《一次函数》都与它有密切的联系.暑假后,方程家族也将迎来《一元二次方程》这一新成员,它的求解方法之一“配方法”,相信你一学就会,例如:解一元二次方程x2+2x-1=0
解:x2+2x-1=0⇒x2+2x+1=2⇒(x+1)2=2⇒x+1=$\sqrt{2}$或x+1=-$\sqrt{2}$
∴x=-1+$\sqrt{2}$或x=-1-$\sqrt{2}$
(二)解决问题
 如图1,矩形ABCD中,AB=9,AD=12,点G在CD上,且DG=5,点P从点B出发,以1单位每秒的速度在BC边上向点C运动,设点P的运动时间为x秒.
(1)△APG的面积为y,求y关于x的函数关系式,并求y=34时x的值;
(2)在点P从B向C运动的过程中,是否存在使AP⊥GP的时刻?若存在,求出x的值,若不存在,请说明理由;
(3)如图2,M,N分别是AP、PG的中点,在点P从B向C运动的过程中,线段MN所扫过的图形是什么形状平行四边形,并直接写出它的面积15.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.计算:
(1)$\sqrt{3\frac{13}{36}}$=$\frac{11}{6}$;
(2)$\sqrt{1\frac{1}{3}}$+$\sqrt{\frac{3}{4}}$=$\frac{7}{6}$$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知xy>0,化简二次根式x$\sqrt{\frac{-y}{{x}^{2}}}$的正确结果为(  )
A.$\sqrt{y}$B.$\sqrt{-y}$C.-$\sqrt{y}$D.-$\sqrt{-y}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,在△ABC中,分别以点A、C为圆心,以大于$\frac{AC}{2}$长为半径作圆弧,两弧分别相交于点E、F,连结EF并延长交边BC于点D,连结AD.若AB=6,BC=8,则△ABD的周长为(  )
A.8B.10C.12D.14

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在一次“社会主义核心价值观”知识竞赛中,四个小组回答正确题数情况如图,求这四个小组回答正确题数的平均数.

查看答案和解析>>

同步练习册答案