分析 先求出抛物线与坐标轴的交点A、B、C的坐标,再求出直线BC的解析式,由题意得出当△BCF的面积最大时,与直线BC平行的直线与抛物线只有一个交点,即为F,由这条直线与抛物线解析式组成方程组有唯一解求出点F的坐标即可.
解答 解:存在点F,点F坐标为:(2,3);理由如下:
当y=0时,-$\frac{1}{2}$x2+$\frac{3}{2}$x+2=0,
解得:x=4,或x=-1,
∴A(-1,0),B(4,0);
当x=0时,y=2,
∴C(0,2);
设直线BC的解析式为:y=kx+b,
根据题意得:$\left\{\begin{array}{l}{4k+b=0}\\{b=2}\end{array}\right.$,
解得:k=-$\frac{1}{2}$,b=2,
∴直线BC的解析式为:y=-$\frac{1}{2}$x+2,
当△BCF的面积最大时,与直线BC平行的直线与抛物线只有一个交点,即为F,
如图所示:设这条直线的解析式为:y=-$\frac{1}{2}$x+a,
方程组$\left\{\begin{array}{l}{y=-\frac{1}{2}x+a}\\{y=-\frac{1}{2}{x}^{2}+\frac{3}{2}x+2}\end{array}\right.$ 有唯一解时,
-$\frac{1}{2}$x2+$\frac{3}{2}$x+2=-$\frac{1}{2}$x+a有两个相等的实数解,
整理得:x2-4x+2a-4=0,
∴△=(-4)2-4×1×(2a-4)=0,
解得:a=4,
方程组的解为:x=2,y=3,
∴点F的坐标为:(2,3).
点评 本题考查了抛物线与坐标轴的交点坐标的求法、一次函数解析式的求法、一元二次方程根的判别式、解方程组;熟练掌握抛物线与坐标轴的交点特征是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4.8 | D. | 5 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $2\sqrt{2}$ | B. | 4 | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com