分析 延长CB到G,使BG=DE,连接AG,证明△ABG≌△ADE,即可证得AG=AE,∠DAE=∠BAG,再证明△AFG≌△AFE,根据全等三角形的对应边相等即可证得.
解答 证明:延长CB到G,使BG=DE,连接AG.
∵△ABG和△ADE中,
$\left\{\begin{array}{l}{AD=AB}\\{∠D=∠ABG}\\{DE=BG}\end{array}\right.$,
∴△ABG≌△ADE,
∴AG=AE,∠DAE=∠BAG,
又∵∠EAF=45°,∠DAB=90°,
∴∠DAE+∠BAF=45°,
∴∠GAF=∠EAF=45°.
∴△AFG和△AFE中,
$\left\{\begin{array}{l}{AE=AG}\\{∠GAF=∠EAF}\\{AF=AF}\end{array}\right.$,
∴△AFG≌△AFE,
∴GF=EF=BG+BF,
又∵DE=BG,
∴DE+BF=EF.
点评 本题考查了正方形的性质以及全等三角形的判定与性质,正确作出辅助线,构造全等的三角形是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1.043×108人 | B. | 1.043×107人 | C. | 1.043×104人 | D. | 1043×105人 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com