精英家教网 > 初中数学 > 题目详情

【题目】小天家、小亮家、学校依次在同一条笔直的公路旁(各自到公路的距离忽略不计),每天早上7点整小天都会从家出发以每分钟60米的速度走到距他家600米的小亮家,然后两人以小天同样的速度准时在730到校早读.某日早上7点过,小亮在家等小天的时候突然想起今天轮到自己值日扫地了,所以就以每分钟60米的速度先向学校走去,后面打算再和小天解释,小天来到小亮家一看小亮不在家,立刻想到小亮今天是值日生(停留及思考时间忽略不计),于是他就以每分钟100米的速度去追小亮,两人之间的距离y(米)及小亮出发的时间x(分)之间的函数关系如下图所示.请问当小天追上小亮时离学校还有_____米.

【答案】200

【解析】

根据题意和函数图象中的数据可以求得当小天追上小亮时离学校还有多少千米,本题得以解决.

解:设小天从到小亮家到追上小亮用的时间为a分钟,由题意可得,

400+60a100a

解得,a10

即小天从到小亮家到追上小亮用的时间为10分钟,

∵小天700从家出发,到学校730

∴小天从家到学校用的时间为:30分钟,

∴当小天追上小亮时离学校还有:60×30600100×10200(米),

故答案为:200

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1CE平分∠ACDAE平分∠BAC,∠EAC+ACE=90°

1)请判断ABCD的位置关系并说明理由;

2)如图2,当∠E=90°ABCD的位置关系保持不变,移动直角顶点E,使∠MCE=ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并说明理由;

3)如图3P为线段AC上一定点,点Q为直线CD上一动点且ABCD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+CQP与∠BAC有何数量关系?猜想结论并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上点A表示的数为﹣3,点B表示的数为3,若在数轴上存在点P,使得AP+BP=m,则称点P为点AB“m级精致点,例如,原点O表示的数为0,则AO+BO=3+3=6,则称点O为点A和点B“6级精致点,根据上述规定,解答下列问题:

1)若点C轴在数轴上表示的数为﹣5,点C为点A和点B“m级精致点,则m=

2)若点D是数轴上点A和点B“8级精致点,求点D表示的数;

3)如图,数轴上点E和点F分别表示的数是﹣24,若点G是点E和点F“m级精致点,且满足GE=3GF,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示

分组

频数

4.0≤x<4.2

2

4.2≤x<4.4

3

4.4≤x<4.6

5

4.6≤x<4.8

8

4.8≤x<5.0

17

5.0≤x<5.2

5

(1)求活动所抽取的学生人数;

(2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;

(3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算的值为( )

A. 5048B. 50C. 4950D. 5050

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边BC绕点C逆时针旋转90°到CE,连接ACDEBEACDE相交于F,则∠AFD_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是,则下列结论:(1)柱子OA的高度为3m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是4m;(4)水池的半径至少要3m才能使喷出的水流不至于落在池外.其中正确的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD边长为3,点EAB边上且BE=1,点PQ分别是边BCCD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是(  )

A. 3 B. 5 C. 4 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).

(1)直接用含t的代数式分别表示:QB=   ,PD=   

(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;

(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.

查看答案和解析>>

同步练习册答案