如图,⊙O是△ABC的外接圆,BC为⊙O直径,作∠CAD=∠B,且点D在BC的延长线上,CE⊥AD于点E.
(1)求证:AD是⊙O的切线;
(2)若⊙O的半径为8,CE=2,求CD的长.
(1)证明见解析;(2).
【解析】
试题分析:(1)首先连接OA,由BC为⊙O直径,CE⊥AD,∠CAD=∠B,易求得∠CAD+∠OAC=90°,即∠OAD=90°,则可证得AD是⊙O的切线;
(2)易证得△CED∽△OAD,然后设CD=x,则OD=x+8,由相似三角形的对应边成比例,可得方程:,继而求得答案.
试题解析:(1)证明:连接OA,
∵BC为⊙O的直径,
∴∠BAC=90°,
∴∠B+∠ACB=90°,
∵OA=OC,
∴∠OAC=∠OCA,
∵∠CAD=∠B,
∴∠CAD+∠OAC=90°,
即∠OAD=90°,
∴OA⊥AD,
∵点A在圆上,
∴AD是⊙O的切线;
(2)∵CE⊥AD,
∴∠CED=∠OAD=90°,
∴CE∥OA,
∴△CED∽△OAD,
∴,CE=2,
设CD=x,则OD=x+8,
即,
解得x=,
经检验x=是原分式方程的解,
所以CD=.
考点: 1.切线的判定;2.解分式方程;3.相似三角形的判定与性质.
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com