11.阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.对于任意正实数a、b,可作如下变形a+b=($\sqrt{a}$)
2$+(\sqrt{b})^{2}$=($\sqrt{a}$)
2$+(\sqrt{b})^{2}$-2$\sqrt{ab}$$+2\sqrt{ab}$=($\sqrt{a}-\sqrt{b}$)
2+2$\sqrt{ab}$,
又∵($\sqrt{a}-\sqrt{b}$)
2≥0,
∴($\sqrt{a}-\sqrt{b}$)
2+2$\sqrt{ab}$≥0+2$\sqrt{ab}$,即a+b≥2$\sqrt{ab}$.
(1)根据上述内容,回答下列问题:在a+b≥2$\sqrt{ab}$(a、b均为正实数)中,若ab为定值p,则a+b≥2$\sqrt{p}$,当且仅当a、b满足a=b时,a+b有最小值2$\sqrt{p}$.
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥2$\sqrt{ab}$成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数y=$\frac{4}{x}$的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连结DF、EF,求四边形ADFE面积的最小值.