【题目】如图,反比例函数 y=的图象与一次函数y=mx+b的图象交于两点A(1,3),B(n,-1).
(1)求反比例函数与一次函数的函数关系式;
(2)根据图象,回答当一次函数的值大于反比例函数的值时,x 的取值范围为________;
(3) 连接AO、BO,则△ABO的面积是_________;
【答案】 x<﹣3或0<x<1 4
【解析】试题分析:(1)把点代入反比例函数
即可求出
的值,进而求出反比例函数的解析式;再把点B的坐标代入反比例函数的关系式求出
的值,把
两点坐标代入一次函数的关系式即可求出一次函数的关系式;
(2)由(1)中两点的坐标,结合函数图象可直接得出结论;
(3)根据(1)中求出的一次函数的关系式求出点的坐标,再根据
进行解答;
试题解析:(1)∵在
的图象上,
又∵在
的图象上,
即
∴,
解得:
∴反比例函数的解析式为,一次函数的解析式为
(2)从图象上可知,当 或
时,反比例函数的值大于一次函数的值.
故答案为: 或
.
(3)设一次函数与轴交点为
,
令一次函数值,得
故答案为:4.
科目:初中数学 来源: 题型:
【题目】某中学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图,如图所示:
(1)补全条形统计图;
(2)求扇形统计图中扇形D的圆心角的度数;
(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5 h内完成家庭作业.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】5月19日,中国首个旅游日正式启动,某校组织了由八年级800名学生参加的旅游地理知识竞赛.李老师为了了解对旅游地理知识的掌握情况,从中随机抽取了部分同学的成绩作为样本,把成绩按优秀、良好、及格、不及格4个级别进行统计,并绘制成了如图所示的条形统计图和扇形统计图(部分信息未给出).
请根据以上提供的信息,解答下列问题:
(1)求被抽取的部分学生的人数;
(2)请补全条形统计图,并求出扇形统计图中表示及格的扇形的圆心角度数;
(3)请估计八年级的800名学生中达到良好和优秀的总人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BE是AB的延长线,指出下面各组中的两个角是由哪两条直线被哪一条直线所截形成的?它们是什么角?
(1)∠A和∠D;
(2)∠A和∠CBA;
(3)∠C和∠CBE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.
(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;
(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,动点P从点B出发,沿矩形的边由运动,设点P运动的路程为x,
的面积为y,把y看作x的函数,函数的图像如图2所示,则
的面积为( )
A. 10 B. 16 C. 18 D. 20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同学们,在初一学习正多边形和圆这节课时,我们就学习过四边形的内角和等于360°.下面我们就在四边形中来研究几个问题:
(1)问题背景:
如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,探究图中线段BE、EF、FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G,使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;
(2)探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍成立,并说明理由;
(3)实际应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(点O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以45海里/时的速度前进,同时,舰艇乙沿北偏西50°的方向以60海里/时的速度前进,2小时后,指挥中心观察到甲、乙两舰艇分别到达E、F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2-4ax+b交x轴正半轴于A,B两点,交y轴正半轴于C,且OB=OC=3.
(1)求抛物线的解析式;
(2)点D为抛物线的顶点,点G在直线BC上,若,直接写出点G的坐标;
(3)将抛物线向上平移m个单位,交BC于点M,N(如图2),若∠MON=45°,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com