精英家教网 > 初中数学 > 题目详情
20.如图,C为半圆内一点,O为圆心,直径AB长为4cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为πcm2

分析 根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可.

解答 解:∵∠BOC=60°,∠BCO=90°,
∴∠OBC=30°,
∴OC=$\frac{1}{2}$OB=1,BC=$\sqrt{3}$,
则边BC扫过区域的面积为:$\frac{120π×{2}^{2}}{360}$+$\frac{1}{2}$×$\sqrt{3}$×1-$\frac{120π×{1}^{2}}{360}$-$\frac{1}{2}$×$\sqrt{3}$×1=πcm2
故答案为:π.

点评 本题考查的是扇形面积的计算、旋转变换的性质,掌握扇形的面积公式:S=$\frac{nπ{R}^{2}}{360}$是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1,固定△ABC不动,将△DEF进行如下操作:
(1)操作发现
如图①,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC、CF、FB,四边形CDBF的形状在不断变化,但它的面积不变化,请求出其面积.
(2)猜想论证
如图②,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.
(3)拓展研究
如图③,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB的边上,此时F点恰好与B点重合,连接AE,则sinα=$\frac{\sqrt{21}}{14}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1000人,则根据此估计步行上学的有400人.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.我们可以定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.

问题探究
(1)如图①已知Rt△ABC中,∠C=90°,AC>BC,试在△ABC内或边上确定一点P,使△BCP为等腰三角形.
(2)如图②,在菱形ABCD中,∠ABC=120°,点M、N分别在AD、CD上,且∠MBN=60°,试判断四边形DMBN是否为“等邻边四边形”?并说明理由.
尝试应用
(3)现有一个矩形材料ABCD,工程人员需要将其制作成一个“等邻边四边形”面板,如图③,在矩形ABCD中,AB=4,BC=6.5,点E在BC上,且BE=3,在矩形ABCD内或者边上,确定一点P,使四边形ABEP为面积最大的“等邻边四边形”,若能实现,请求出最大面积,若不能实现,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4$\sqrt{30}$,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ=16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.钓鱼岛自古以来就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视检测.如图,E、F为钓鱼岛东西两端.某日,中国一艘海监船从A点向正北方向巡航,其航线距离钓鱼岛最近距离CF=20$\sqrt{3}$海里,在A点测得钓鱼岛最西端F在点A的北偏东30°方向,航线20海里后到达B点,测得最东端E点在B的东北方向(C、F、E在同一直线上).($\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73,$\sqrt{7}$≈2.65,结果精确到0.1)
(1)求钓鱼岛东西两端的距离.
(2)若监测船在B点突然检测到F点处有轮艘船出了故障,1.5小时内必须进行抢修.监测船以每小时25海里的速度赶往F点,能否赶到?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.在平面直角坐标系中,如果点P坐标为(m,n),向量$\overrightarrow{OP}$可以用点P的坐标表示为$\overrightarrow{OP}$=(m,n).
已知:$\overrightarrow{OA}$=(x1,y1),$\overrightarrow{OB}$=(x2,y2),如果x1•x2+y1•y2=0,那么$\overrightarrow{OA}$与$\overrightarrow{OB}$互相垂直,下列四组向量:
①$\overrightarrow{OC}$=(2,1),$\overrightarrow{OD}$=(-1,2);
②$\overrightarrow{OE}$=(cos30°,tan45°),$\overrightarrow{OF}$=(1,sin60°);
③$\overrightarrow{OG}$=($\sqrt{3}$-$\sqrt{2}$,-2),$\overrightarrow{OH}$=($\sqrt{3}$+$\sqrt{2}$,$\frac{1}{2}$);
④$\overrightarrow{OM}$=(π0,2),$\overrightarrow{ON}$=(2,-1).
其中互相垂直的是①③④(填上所有正确答案的符号).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是x=0或x=4$\sqrt{2}$-4或4<x<4$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.5的相反数是(  )
A.5B.-5C.$\frac{1}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

同步练习册答案