精英家教网 > 初中数学 > 题目详情
(2004•泰安)有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE(如图),则CD等于(  )
分析:首先设CD=xcm,由折叠的性质可得:AD=BD=(8-x)cm,然后在Rt△ACD中,利用勾股定理即可得方程:62+x2=(8-x)2,解此方程即可求得答案.
解答:解:设CD=xcm,则BD=BC-CD=8-x(cm),
由折叠的性质可得:AD=BD=(8-x)cm,
在Rt△ACD中:AC2+CD2=AD2
即:62+x2=(8-x)2
解得:x=
7
4

∴CD=
7
4

故选C.
点评:此题考查了折叠的性质与勾股定理.此题难度不大,注意掌握数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2004•泰安)若关于x的方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2004•泰安)某学校为了了解初二学生的身高情况,随机抽测50名学生的身高后,所得部分资料如下(身高单位:cm,测量时精确到1cm):
身高 148 151 154 155 157 158 160 161 162 164
人数 1 1 2 1 2 3 4 3 4 5
身高 165 166 167 168 170 171 173 175 177 179
人数 2 3 6 1 4 2 3 1 1 1
若将数据分成8组,取组距为4cm,相应的频率分布表(部分)是:
分      组 频       数 频     率
147.5~151.5 2 0.04
151.5~155.5 3 0.06
155.5~159.5 5 0.10
159.5~163.5 11 0.22
163.5~167.5
16
16

0.32
0.32
167.5~171.5
7
7
 

0.14
0.14
 
171.5~175.5 4 0.08
175.5~179.5 2 0.04
合  计 50 1.00
请回答下列问题:
(1)样本数据中,身高的众数、中位数各是多少?
(2)填写频率分布表中未完成的部分;
(3)若该校初中二年级有840名学生,请你估计该年级学生身高在172cm及以上的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2004•泰安)如图,在△ABC中,AB=3,BC=2
2
,∠B=45°,在BC边上有一动点M,过M作MN∥AC,交AB于点N,连接AM,设CM=x(0<x<2
2
 ),△AMN的面积为S.
(1)求S与x之间的函数关系式;
(2)是否存在点M,使△AMN的面积等于4?若存在,求出CM的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2004•泰安)已知:如图,⊙P与⊙O相交于点A、B,且⊙P经过点O,点C是⊙P的优弧AB上任意一点(不与点A、B重合),弦OC交公共弦AB于点D,连接CA、CB.
(1)求证:CD•CO=CA•CB;
(2)当点C在⊙P上何位置时,直线CA与⊙O相切?并说明理由;
(3)当∠ACB等于60°时,两圆半径有什么关系?并说明理由.

查看答案和解析>>

同步练习册答案