【题目】如图,甲、乙两人分别从A(1, ),B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向,乙沿BO方向均以4km/h的速度行驶,th后,甲到达M点,乙到达N点.
(1)请说明甲、乙两人到达O点前,MN与AB不可能平行;
(2)当t为何值时,△OMN∽△OBA;
(3)甲、乙两人之间的距离为MN的长,设s=MN2 , 直接写出s与t之间的函数关系式.
【答案】
(1)
解:∵A点的坐标为(1, ),
∴OA= =2;
∵OM=2﹣4t,ON=6﹣4t,
∴当 = 时,解得t=0,
∴甲、乙两人到达O点前,只有当t=0时,△OMN∽△OAB,
∴MN与AB不可能平行.
(2)
解:∵甲到达O点的时间为t= ,乙到达O点的时间为t= = ,
∴甲先到达O点,
∴t= 或t= 时,O、M、N三点不能连接成三角形.
①t< 时,
如果△OMN∽△OBA,则有 = ,
解得t=2> ,
∴△OMN不可能和△OBA相似.
②当 <t< 时,
∠MON>∠AOB,
显然△OMN不可能和△OBA相似.
③当t> 时,
= ,
解得t=2> ,
∴当t=2时,△OMN∽△OBA.
(3)
解:①当t≤ 时,如图1,过点M作MH⊥x轴于点H,
,
在Rt△MOH中,
∵∠AOB=60°,
∴MH=OMsin60°=(2﹣4t)× = (1﹣2t),
∴OH=OMcos60°=(2﹣4t)× =1﹣2t,
∴NH=(6﹣4t)﹣(1﹣2t)=5﹣2t,
∴s=[ (1﹣2t)]2+(5﹣2t)2
=3(4t2﹣4t+1)+(4t2﹣20t+25)
=16t2﹣32t+28.
②当 <t≤ 时,如图2,作MH⊥x轴于点H,
,
在Rt△MOH中,
MH= (4t﹣2)= (2t﹣1),
NH= (4t﹣2)+(6﹣4t)=5﹣2t,
∴s=[ (1﹣2t)]2+(5﹣2t)2=16t2﹣32t+28.
③当t> 时,同理可得s=[ (1﹣2t)]2+(5﹣2t)2=16t2﹣32t+28.
综上,可得s=[ (1﹣2t)]2+(5﹣2t)2=16t2﹣32t+28.
【解析】(1)判断出甲、乙两人到达O点前,只有当t=0时,△OMN∽△OAB,即可推得MN与AB不可能平行.(2)根据题意,分三种情况:①t< 时;②当 <t< 时;③当t> 时;求出当t为何值时,△OMN∽△OBA.(3)根据题意,分三种情况:①t≤ 时;②当 <t≤ 时;③当t> 时;写出s与t之间的函数关系式即可.
【考点精析】关于本题考查的二次函数的图象和二次函数的性质,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图,E是正方形ABCD中CD边上一点,以点A为中心把△ADE顺时针旋转90°.
(1)在图中画出旋转后的图形;
(2)若旋转后E点的对应点记为M,点F在BC上,且∠EAF=45°,连接EF. ①求证:△AMF≌△AEF;
②若正方形的边长为6,AE=3 ,求EF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市重庆路水果市场某水果店购进甲、乙两种水果.已知1千克甲种水果的进价比1千克乙种水果的进价多4元,购进2千克甲种水果与1千克乙种水果共需20元.
(1)求甲种水果的进价为每千克多少元?
(2)经市场调查发现,甲种水果每天销售量y(千克)与售价m(元/千克)之间满足如图所示的函数关系,求y与m之间的函数关系;
(3)在(2)的条件下,当甲种水果的售价定为多少元时,才能使每天销售甲种水果的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,O为AB边上一点,⊙O交AB于E,F两点,BC切⊙O于点D,且CD= EF=1.
(1)求证:⊙O与AC相切;
(2)求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c(a≠0)图象过点(﹣1,0),顶点为(1,2),则结论:
①abc>0;②x=1时,函数最大值是2;③4a+2b+c>0;④2a+b=0;⑤2c<3b.
其中正确的结论有( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com