精英家教网 > 初中数学 > 题目详情
如图,已知⊙P的半径为2,圆心P在抛物线y=
1
2
x2-2上运动,当⊙P与x轴相切时,圆心P的坐标为______.
∵⊙P的半径为2,圆心P在抛物线y=
1
2
x2-2上运动,
∴当⊙P与x轴相切时,假设切点为A,
∴PA=2,
∴|
1
2
x2-2|=2
1
2
x2-2=2,或
1
2
x2-2=-2,
解得x=±2
2
,或x=0,
∴P点的坐标为:(2
2
,2)或(-2
2
,2)或(0,-2).
故答案为:(2
2
,2)或(-2
2
,2)或(0,-2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=
1
2
x2+bx+c的图象经过点A(c,-2),,求证:这个二次函数图象的对称轴是x=3.
题目中的矩形框部分是一段墨水污染了无法辨认的文字.
(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程;若不能,请说明理由;
(2)请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△AOB是一张放在平面直角坐标系中的三角形纸片,点O与原点重合,点A在x轴上,点B在y轴上OB=
3
,∠BAO=30°,将Rt△AOB折叠,使OB边落在AB边上,点O与点D重合,折痕为BE.
(1)求点E和点D的坐标;
(2)求经过O、D、A三点的二次函数解析式;
(3)设直线BE与(2)中二次函数图象的对称轴交于点F,M为OF中点,N为AF中点,在x轴上是否存在点P,使△PMN的周长最小,若存在,请求出点P的坐标和最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.
现有△ABM,A(-1,0),B(1,0).记过三点的二次函数抛物线为“C□□□”(“□□□”中填写相应三个点的字母)
(1)若已知M(0,1),△ABM≌△ABN(0,-1).请通过计算判断CABM与CABN是否为全等抛物线;
(2)在图2中,以A、B、M三点为顶点,画出平行四边形.
①若已知M(0,n),求抛物线CABM的解析式,并直接写出所有过平行四边形中三个顶点且能与CABM全等的抛物线解析式.
②若已知M(m,n),当m,n满足什么条件时,存在抛物线CABM根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与CABM全等的抛物线?若存在,请列出所有满足条件的抛物线“C□□□”;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

下表给出了x与函数y=x2+bx+c的一些对应值:
x0136
y50-45
(1)请根据表格求出y=x2+bx+c的解析式;
(2)写出抛物线y=x2+bx+c的对称轴与顶点坐标;
(3)求出y=x2+bx+c与x轴的交点坐标;
(4)画出y=x2+bx+c的大致图象,并结合图象指出,当y<0,x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=(x-3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.

(1)求点B及点D的坐标.
(2)连结BD,CD,抛物线的对称轴与x轴交于点E.
①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.
②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成(  )
A.1.5m,1mB.1m,0.5mC.2m,1mD.2m,0.5m

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,二次函数y=mx2+3(m-
1
4
)x+4(m<0)与x轴交于A、B两点,(A在B的左边),与y轴交于点C,且∠ACB=90度.
(1)求这个二次函数的解析式;
(2)矩形DEFG的一条边DG在AB上,E、F分别在BC、AC上,设OD=x,矩形DEFG的面积为S,求S关于x的函数解析式;
(3)将(1)中所得抛物线向左平移2个单位后,与x轴交于A′、B′两点(A′在B′的左边),矩形D′E′F′G′的一条边D′G′在A′B′上(G′在D′的左边),E′、F′分别在抛物线上,矩形D′E′F′G′的周长是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下.若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
(2)每千克水果涨价多少元时,商场每天获得的利润最大?获得的最大利润是多少元?

查看答案和解析>>

同步练习册答案