精英家教网 > 初中数学 > 题目详情
精英家教网如图,在等腰梯形ABCD中,AB∥CD,∠ABC=60°,AC平分∠DAB,E、F分别为对角线AC、DB的中点,且EF=4.求这个梯形的面积.
分析:求出AD=DC=BC,AB=2AD,设CD=a,则AB=2a,连接DE,并延长DE交AB于M,证△DEC≌△MEA,推出DC=AM=a,DE=EM,求出EF=
1
2
BM,即可求出a,过C作CN⊥AB于N,求出CN即可.
解答:解:∵四边形ABCD是等腰梯形,
∴∠DAB=∠ABC=60°,DC∥AB,
∴∠DCA=∠CAB,
∵AC平分∠DAB,
∴∠DAC=∠CAB=
1
2
∠DAB=30°,∠DCA=∠DAC,
∴∠ACB=90°,AD=DC=BC,
∴AB=2BC=2CD,
设CD=a,则AB=2a,精英家教网
连接DE,并延长DE交AB于M,
∵在△DEC和△MEA中
∠DCE=∠MAE
CE=AE
∠DEC=∠MEA

∴△DEC≌△MEA(ASA),
∴DC=AM=a,DE=EM,
∵DF=BF,
∴EF=
1
2
BM=
1
2
(AB-AM),
∵EF=4,
∴4=
1
2
(2a-a),
a=8,
即BC=AD=DC=8,AB=16,
过C作CN⊥AB于N,精英家教网
∵BC=8,∠ABC=60°,
∴∠BCN=30°,
∴BN=
1
2
BC=4,由勾股定理得:CN=4
3

∴梯形的面积=
1
2
(DC+AB)×CN=
1
2
×(8+16)×4
3
=48
3
点评:本题需要辅助线的帮助,有一定难度,主要考查的是等腰梯形的性质以及梯形的面积公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒.
(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存精英家教网在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,在等腰梯形ABCD中,AD∥BC,AB=DC,E为AD的中点,求证:BE=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=3EA,CF=3FD.
求证:∠BEC=∠CFB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源:中考必备’04全国中考试题集锦·数学 题型:044

如图,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S.

  

(1)分别求出当点Q位于AB、BC上时,S与x之间的函数关系式,并写出自变量x的取值范围;

(2)当线段PQ将梯形AB∥⊥CD分成面积相等的两部分时,x的值是多少?

(3)当(2)的条件下,设线段PQ与梯形AB∥⊥CD的中位线EF交于O点,那么OE与OF的长度有什么关系?借助备用图说明理由;并进一步探究:对任何一个梯形,当一直线l经过梯形中位线的中点并满足什么条件时,一定能平分梯形的面积?(只要求说出条件,不需要证明)

查看答案和解析>>

同步练习册答案