【题目】二次函数的图象如图所示,下列结论:①;②;③;④;⑤.其中正确的是________________.
【答案】①②④⑤
【解析】
由抛物线开口方向得到a<0,然后利用抛物线的对称轴得到b的符号,则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;利用x=1时,y>0可对③进行判断;利用抛物线的对称性和x=0时,y>0可对④进行判断;利用b=2a和x=1时,y<0,可对⑤进行判断.
解:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴为直线x==1,
∴b=2a>0,
∴ab<0,所以①正确;
∵抛物线与x轴有2个交点,
∴△=b24ac>0,即,所以②正确;
∵x=1时,y>0,
∴a+b+c>0,所以③错误;
∵抛物线的对称轴为x=1,
∴x=2和x=0的函数值相等,
∵x=0时,y>0,
∴x=2时,y>0,即,所以④正确;
∵b=2a,
而x=1时,y<0,即ab+c<0,
∴3a+c<0,所以⑤正确,
故答案为:①②④⑤.
科目:初中数学 来源: 题型:
【题目】综合与实践:
问题情境:在矩形ABCD中,点E为BC边的中点,将△ABE沿直线AE翻折,使点B与点F重合,直线AF交直线CD于点G.
特例探究 实验小组的同学发现:
(1)如图1,当AB=BC时,AG=BC+CG,请你证明该小组发现的结论;
(2)当AB=BC=4时,求CG的长;
延伸拓展:(3)实知小组的同学在实验小组的启发下,进一步探究了当AB∶BC=∶2时,线段AG,BC,CG之间的数量关系,请你直接写出实知小组的结论:___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,,,以点A为旋转中心,逆时针旋转矩形ABCD,旋转角为,得到矩形AEFG,点B、点C、点D的对应点分别为点E、点F、点G.
如图,当点E落在DC边上时,直写出线段EC的长度为______;
如图,当点E落在线段CF上时,AE与DC相交于点H,连接AC,
求证:≌;
直接写出线段DH的长度为______.
如图设点P为边FG的中点,连接PB,PE,在矩形ABCD旋转过程中,的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与x轴交于A、B两点,与y轴交于点C,点为抛物线的顶点,且.
(1)求抛物线的解析式;
(2)设,,求的值;
(3)探究坐标轴上是否存在点P,使得以P、A、C三点为顶点的三角形与相似,若存在,请指出点P的位置,并直接写出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一般情况下,中学生完成数学家庭作业时,注意力指数随时间x(分钟)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).
(1)分别求出线段AB和双曲线CD的函数关系式;
(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.
(1)求证AE=BF;
(2)若正方形的边长是5,BE=2,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中∠C=90°、∠A=30°,在AC边上取点O画圆使⊙O经过A、B两点,
(1)求证:以O为圆心,以OC为半径的圆与AB相切.
(2)下列结论正确的序号是___________.(少选酌情给分,多选、错均不给分)
①AO=2CO ;
②AO=BC;
③延长BC交⊙O与D,则A、B、D是⊙O的三等分点.
④图中阴影面积为:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com