精英家教网 > 初中数学 > 题目详情
9.某校为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查,问卷给出了四种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的扇形统计图和条形统计图(均不完整).

根据以上信息,解答下列问题:
(1)在这次调查中,一共抽取了80名学生;
(2)补全条形统计图;
(3)如果全校有1200名学生,学习准备的400个自行车停车位是否够用?

分析 (1)根据公交车所占比例为40%,而由条形图知一共有32人坐公交车上学,从而求出总人数;
(2)由扇形统计图知:步行占20%,而由(1)总人数已知,从而求出步行人数,补全条形图;
(3)根据被调查的总人数及骑自行车上学的人数,用样本中骑自行车人数所占比例乘以总人数1200,与的400个自行车停车位比较即可得答案.

解答 解:(1)32÷40%=80,
故答案为:80;

(2)“步行”的人数为:80×20%=16(人),
补全图,如下:
(3)∵骑自行车上学的人有80-(16+32+8)=24(人),
∴$\frac{24}{80}$×1200=360,
∵360<400,
∴够用.

点评 此题考查了条形统计图和扇形统计图及用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.计算:
(1)(a-2)2-(a-2)(a+3)
(2)($\frac{a+1}{{a}^{2}-a}$-$\frac{a}{{a}^{2}-2a+1}$)÷$\frac{1}{a}$+$\frac{{a}^{2}}{(a-1)^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“国际象棋”、“音乐舞蹈”和“书法”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校部分学生选择社团的意向,并将调查结果绘制成如下统计图(不完整):

根据统计图的信息,解答下列问题:
(1)求本次抽样调查的学生总人数及a、b的值;
(2)将条形统计图补充完整;
(3)若该校共有1300名学生,试估计全校选择“音乐舞蹈”社团的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.“知识改变命运,科技繁荣祖国”,某区中小学每年都要举办一届科技比赛,如图为某区某校2017年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图.
(1)该校参加机器人、建模比赛的人数分别是4人和6人;
(2)该校参加科技比赛的总人数是24人,电子百拼所在扇形的圆心角的度数是120°,并把条形统计图补充完整;
(3)从全区中小学参加科技比赛选手中随机抽取85人,其中有34人获奖.2017年某区中小学参加科技比赛人数共有3625人,请你估算2017年参加科技比赛的获奖人数约是多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.利用图1,图2提供的某公司的一些信息,解答下列问题.

(1)2016年该公司工资支出的金额是3.6万元;
(2)2014年到2016年该公司总支出的年平均增长率;
(3)若保持这种增长速度,请你预估该公司2017年的总支出.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,已知抛物线y=x2-2bx-3(b为常数,b<0).
发现:(1)抛物线y=x2-2bx-3总经过一定点,定点坐标为(0,-3);
(2)抛物线的对称轴为直线x=b(用含b的代数式表示),位于y轴的左侧.
思考:若点P(-2,-1)在抛物线y=x2-2bx-3上,抛物线与反比例函数y=$\frac{k}{x}$(k>0,x>0)的图象在第一象限内交点的横坐标为a,且满足2<a<3,试确定k的取值范围.
探究:设点A是抛物线上一点,且点A的横坐标为m,以点A为顶点做边长为1的正方形ABCD,AB⊥x轴,点C在点A的右下方,若抛物线与CD边相交于点P(不与D点重合且不在y轴上),点P的纵坐标为-3,求b与m之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,△OBC是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC=$\sqrt{3}$,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的m倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的m倍,使OB2=OC1,得到△OB2C2,…,如此继续下去,得到△OB2017C2017,则m的值和点C2017的坐标是(  )
A.2,(-22017,22017×$\sqrt{3}$)B.2,(-22018,0)
C.$\sqrt{3}$,(-22017,22017×$\sqrt{3}$)D.$\sqrt{3}$,(-22018,0)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在△ABC中,AB=AC,以AB为直径的⊙O分别交边BC、AC于点D、点E,且AE=BE.
(1)如图①,求∠EBC的度数;
(2)如图②,过点D作⊙O的切线交AB的延长线于点G,交AC于点F,若⊙O的直径为10,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.抛物线y=4x2-2ax+b与x轴相交于A(x1,0),B(x2,0)(0<x1<x2)两点,与y轴交于点C.
(1)设AB=2,tan∠ABC=4,求该抛物线的解析式;
(2)在(1)中,若点D为直线BC下方抛物线上一动点,当△BCD的面积最大时,求点D的坐标;
(3)是否存在整数a,b使得1<x1<2和1<x2<2同时成立,请证明你的结论.

查看答案和解析>>

同步练习册答案