分析 首先连接BC,由AB是直径,可求得∠ACB=90°,则可求得∠B的度数,然后由翻折的性质可得,$\widehat{AC}$所对的圆周角为∠B,$\widehat{ABC}$所对的圆周角为∠ADC,继而求得答案.
解答 解:连接BC,
∵AB是直径,
∴∠ACB=90°,
∵∠BAC=25°,
∴∠B=90°-∠BAC=90°-25°=65°,
根据翻折的性质,$\widehat{AC}$所对的圆周角为∠B,$\widehat{ABC}$所对的圆周角为∠ADC,
∴∠ADC+∠B=180°,
∴∠B=∠CDB=65°,
∴∠DCA=∠CDB-∠A=65°-25°=40°.
故答案为:40.
点评 此题考查了圆周角定理以及折叠的性质.注意掌握辅助线的作法,能得到∠BDC=∠B是解此题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 12% | B. | 30% | C. | 10% | D. | 22% |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com