【题目】2018年5月5日,中国邮政发行《马克思诞辰200周年》纪念邮票1套2枚(如图),这套邮票正面图案为:马克思像、马克思与恩格斯像,背面完全相同.发行当日,小宇购买了此款纪念邮票2套,他将2套邮票沿中间虚线撕开(使4枚形状、大小完全相同)后将4枚纪念邮票背面朝上放在桌面上,并随机从中抽出2张,则抽出的2张邮票恰好都是“马克思像”的概率为( )
A.B.C.D.
科目:初中数学 来源: 题型:
【题目】综合与探究
如图,在平面直角坐标系中,点为坐标原点,抛物线与轴交于点,与轴交于点,,抛物线的对称轴交抛物线于点,交轴于点,交直线于点.
(1)求抛物线的函数表达式及其对称轴:
(2)点是线段上一点,且,求点的坐标;
(3)若点是抛物线上任意一点,点是直线上任意一点,点是平面上任意一点,是否存在这样的点,,,使得以点,,,为顶点的四边形是正方形,若存在,请直接写出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G,若EF=EG,则CD的长为( )
A.3.6B.4C.4.8D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△ADE是两个不全等的等腰直角三角形,其中点B与点D是直角顶点,现固定△ABC,而将△ADE绕点A在平面内旋转.
(1)如图1,当点D在CA延长线上时,点M为EC的中点,求证:△DMB是等腰三角形.
(2)如图2,当点E在CA延长线上时,M是EC上一点,若△DMB是等腰直角三角形,∠DMB为直角,求证:点M是EC的中点.
(3)如图3,当△ADE绕点A旋转任意角度时,线段EC上是否都存在点M,使△BMD为等腰直角三角形,若不存在,请举出反例;若存在,请予以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为落实“美丽泰州”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成该改造工作.已知甲队的工作效率是乙队工作效率的倍,甲队改造720米的道路比乙队改造同样长的道路少用4天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,若需改造的道路全长2400米,改造总费用不超过195万元,则至少安排甲队工作多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与x轴,y轴分别交于点,B.点是线段上一点,作直线.
(1)若,求直线的函数解析式;
(2)当时,求面积的取值范围;
(3)若平分,记的周长为m,的周长为n,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC内接于⊙O,BC为⊙O直径,延长AC至D,过D作⊙O切线,切点为E,且∠D=90°,连接BE.DE=12,
(1)若CD=4,求⊙O的半径;
(2)若AD+CD=30,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AB,A(2,3),B(5,3),抛物线y=﹣(x﹣1)2﹣m2+2m+1与x轴的两个交点分别为C,D(点C在点D的左侧)
(1)求m为何值时抛物线过原点,并求出此时抛物线的解析式及对称轴和项点坐标.
(2)设抛物线的顶点为P,m为何值时△PCD的面积最大,最大面积是多少.
(3)将线段AB沿y轴向下平移n个单位,求当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在过直线AB外一点P作直线AB的平行线时,可以按如下步骤进行:①在直线AB上任取两点C,D;②分别以点P,D为圆心,CD与PC为半径画弧,两弧交于点E;③作直线PE,则PE∥AB.在上面作图过程中,PE∥AB的依据是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com