分析 先根据垂径定理求出AD的长,然后在Rt△AOD中,运用勾股定理将圆的半径求出,进而可求出直径CE的长.
解答 解:本题用现在的数学语言表述是:“如图所示,CE为⊙O的直径,CE⊥AB,垂足为D,CD=1寸,AB=1尺,求直径CE长是多少寸?”
设直径CE的长为2x寸,则半径OC=x寸.
∵CE为⊙O的直径,弦AB⊥CE于D,AB=10寸,
∴AD=BD=$\frac{1}{2}$AB=5寸,
连接OA,则OA=x寸,
根据勾股定理得x2=52+(x-1)2,
解得x=13,
CE=2x=2×13=26(寸).
故所求直径为26寸.
点评 此题是一道古代问题,考查了垂径定理和勾股定理的应用.通过此题,可知我国古代的数学已发展到很高的水平.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 120° | B. | 70° | C. | 60° | D. | 50°. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com