精英家教网 > 初中数学 > 题目详情
(2002•济南)已知抛物线过A(-1,0)和B(3,0)与y轴交于点C且BC=3,则这条抛物线解析式为( )
A.y=-x2+2x+3
B.y=x2-2x-3
C.y=x2+2x-3或y=-x2+2x+3
D.y=-x2+2x+3或y=x2-2x-3
【答案】分析:观察A、B两点坐标的特点,可以推出A、B为抛物线与x轴的交点;然后利用勾股定理求出C点的纵坐标,最后用待定系数法求出函数的解析式.
解答:解:∵A、B两点的纵坐标为0.
∴A、B为抛物线与x轴的交点,
∴△OBC为直角三角形.
又∵C点有可能在y轴的负半轴,也可能在y轴的正半轴.
∴C点的纵坐标为3或-3(根据勾股定理求得).
∴C点的纵坐标为(0,3)或(0,-3).
设函数的解析式为y=ax2+bx+c,
(1)则当抛物线经过(-1,0)、(3,0)、(0,-3)三点时,
a-b+c=0  9a+3b+c=0  c=-3解得:a=1 b=-2 c=-3,
则解析式为y=x2-2x-3;
(2)则当抛物线经过(-1,0)、(3,0)、(0,3)三点时,
a-b+c=0  9a+3b+c=0  c=3解得:a=1 b=2 c=-3,
则解析式为y=x2+2x+3.
故选D.
点评:分类讨论思想在解决数学问题时经常用到,有些同学在解题时不注意而造成漏解的情况.
练习册系列答案
相关习题

科目:初中数学 来源:2002年山东省济南市中考数学试卷(解析版) 题型:选择题

(2002•济南)已知抛物线过A(-1,0)和B(3,0)与y轴交于点C且BC=3,则这条抛物线解析式为( )
A.y=-x2+2x+3
B.y=x2-2x-3
C.y=x2+2x-3或y=-x2+2x+3
D.y=-x2+2x+3或y=x2-2x-3

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《图形的相似》(05)(解析版) 题型:解答题

(2002•济南)如图,已知AB=AC+BD,∠CAB=∠ABD=90°AD交BC于P,⊙P与AB相切于点Q.设AC=a,BD=b(a≤b).
(1)求⊙P的半径r;
(2)以AB为直径在AB的上方作半圆O(用尺规作图,保留痕迹,不写作法),请你探索⊙O与⊙P的位置关系,做出判断并加以证明;
(3)设a=2,b=4,能否在半圆O中,再画出两个与⊙P同样大小的⊙M和⊙N,使这3个小圆两两相交,并且每两个小圆的公共部分的面积都小于π?请说出你的结论,并给出证明.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《图形的相似》(01)(解析版) 题型:选择题

(2002•济南)如图,已知AB,CD分别是半圆O的直径和弦,AD和BC相交于点E,若∠AEC=α,则S△CDE:S△ABE等于( )

A.sinα
B.cosα
C.sin2α
D.cos2α

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(07)(解析版) 题型:填空题

(2002•济南)如图,已知直线y=-x+6与x轴交于点A,与y轴交于点B,点P为x轴上可以移动的点,且点P在点A的左侧,PM⊥x轴,交直线y=-x+6于点M,有一个动圆O′,它与x轴、直线PM和直线y=-x+6都相切,且在x轴的上方.当⊙O'与y轴也相切时,点P的坐标是   

查看答案和解析>>

同步练习册答案