精英家教网 > 初中数学 > 题目详情

【题目】已知,抛物线y=ax2+2ax+c与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.

(1)求抛物线的解析式;

(2)当a>0时,如图所示,若点D是第三象限方抛物线上的动点,设点D的横坐标为m,三角形ADC的面积为S,求出S与m的函数关系式,并直接写出自变量m的取值范围;请问当m为何值时,S有最大值?最大值是多少.

【答案】(1) y=﹣x2﹣2x+3y=x2+2x﹣3;(2) S=﹣(m2+3m)(﹣3m0);m=﹣时,S取最大值,最大值为.

【解析】

(1)根据点B的坐标及OC=3OB可得出点C的坐标,再根据点B、C的坐标利用待定系数法即可求出抛物线的解析式;

(2)过点DDEx轴,交AC于点E,利用二次函数图象上点的坐标特征可求出点A、C的坐标,进而即可得出线段AC所在直线的解析式,由点D的横坐标可找出点D、E的坐标,再利用三角形的面积公式即可得出Sm的函数关系式,利用配方法可找出S的最大值.

(1)∵点B的坐标为(1,0),OC=3OB,

∴点C的坐标为(0,3)或(0,﹣3),

将点B(1,0)、C(0,3)或(0,﹣3)代入y=ax2+2ax+c,

解得:

∴抛物线的解析式为y=﹣x2﹣2x+3y=x2+2x﹣3.

(2)过点DDEx轴,交AC于点E,如图所示.

a>0,

∴抛物线的解析式为y=x2+2x﹣3,

∴点C的坐标为(0,﹣3).

y=0时,有x2+2x﹣3=0,

解得:x1=﹣3,x2=1,

∴点A的坐标为(﹣3,0),

利用待定系数法可求出线段AC所在直线的解析式为y=﹣x﹣3.

∵点D的横坐标为m,

∴点D的坐标为(m,m2+2m﹣3),点E的坐标为(m,﹣m﹣3),

DE=﹣m﹣3﹣(m2+2m﹣3)=﹣m2﹣3m,

S=DE×|﹣3﹣0|=﹣(m2+3m)(﹣3<m<0).

<0,且S=﹣(m2+3m)=﹣(m+2+

∴当m=﹣时,S取最大值,最大值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在由6个大小相同的小正方形组成的方格中:

1)如图(1),ABC 的三个顶点ABC都在格点上,试判断ABC的形状,并加以证明;

2)如图(2),连结三格和两格的对角线,利用(1)的图形特征,求出∠α+β的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,将绕点按顺时针旋转得到,连接,它们交于点,

求证:

,求的度数.

当四边形是菱形时,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,用直尺和圆规作BAD的平分线AG交BC于点E,若BF=12,AB=10,则AE的长为( )

A.16 B.15 C.14 D.13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示ABDEACDFAC=DF下列条件中不能判断ABC≌△DEF的是(  )

A. AB=DE B. B=∠E C. EF=BC D. EFBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.

(1)请直接写出yx之间的函数关系式;

(2)如果每天获得160元的利润,销售单价为多少元?

(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小苏和小林在如图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是(

A. 两人从起跑线同时出发,同时到达终点

B. 小苏跑全程的平均速度大于小林跑全程的平均速度

C. 小苏前15s跑过的路程大于小林前15s跑过的路程

D. 小林在跑最后100m的过程中,与小苏相遇2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在等腰直角三角形DBC中,BDC=90°,BF平分DBC,与CD相交于点F,延长BD到A,使DA=DF,

(1)试说明FBD≌△ACD;

(2)延长BF交AC于E,且BEAC,试说明CE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】武胜县白坪飞龙乡村旅游度假村橙海阳光景点组织辆汽车装运完三种脐橙共吨到外地销售.按计划,辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:

脐橙品种

每辆汽车运载量(吨)

每吨脐橙获得(元)

设装运种脐橙的车辆数为,装运种脐橙的车辆数为,求之间的函数关系式;

如果装运每种脐橙的车辆数都不少于辆,那么车辆的安排方案有几种?

设销售利润为(元),求之间的函数关系式;若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.

查看答案和解析>>

同步练习册答案