试题分析:本题是一道几何证明题,主要考查了正方形的性质、全等三角形的性质与判定、勾股定理等知识点,试题难度不大,但要注意第(3)题中认真计算,避免出错.
求证DP=DQ;只需证明△ADP≌△CDQ即可得到DP=DQ.解题的关键是找出∠PDC的两个余角相等即∠ADP =∠CDQ,两三角形全等的条件就具备了.
PE=QE.只需证明△PDE≌△QDE即可得到,由(1)的结论DP=DQ加上DE是∠PDQ的平分线易用SAS证得结论.
(3)由AB:AP=3:4,AB=6可求AP=8,BP=2;直接由(1)和(2)的结论AP=CQ、PE=QE设CE=x,则PE=8-x,利用勾股定理求得Rt△PEB的边PE,由此可得EQ的长度,这样△DEP的面积就不难求得了.
试题解析:
(1)证明:∵四边形ABCD是正方形
∴DA=DC,∠DAP=∠DCQ=90°
∵∠PDQ=90°
∴∠ADP+∠PDC=90°
∠CDQ+∠PDC=90°
∠ADP=∠CDQ
在△ADP与△CDQ中
∴△ADP≌△CDQ(ASA)
∴DP=DQ
(2)解:PE=QE.证明如下:
∵ DE是∠PDQ的平分线
∴∠PDE=∠QDE
在△PDE与△QDE中
∴△PDE≌△QDE(SAS)
∴PE=QE
(3)解:∵AB:AP=3:4,AB=6
∴AP=8,BP=2,
由(1)知:△ADP≌△CDQ 则AP=CQ=8
由(2)知:△PDE≌△QDE,PE=QE
设CE=x,则PE=QE=CQ-CE=8-x
在Rt△PEB中,BP=2,BE=6+x,PE=8-x
由勾股定理得:2
2+(6+x)
2=(8-x)
2解得:x=
∴
∴△DEP的面积为:
.