精英家教网 > 初中数学 > 题目详情
(2012•天门)如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=6cm,CD⊥AB于D,以C为圆心,CD为半径画弧,交BC于E,则图中阴影部分的面积为(  )
分析:先利用解直角三角形的知识得出CD、BD的长度,然后计算扇形CDE的面积,继而可得出阴影部分的面积.
解答:解:∵∠A=30°,AC=6cm,CD⊥AB,
∴∠B=60°,∠BCD=30°,CD=3cm,BD=
3
cm,
S△BDC=
1
2
BD×DC=
3
3
2
cm2,S扇形CED=
30π×32
360
=
4

故阴影部分的面积为:(
3
3
2
-
4
)cm2
故选A.
点评:此题考查了扇形面积的计算及解直角三角形的知识,解答本题的关键是得出CD、BC、BD的长度,另外要熟练掌握扇形的面积计算公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•天门)如图,AB∥CD,∠A=48°,∠C=22°.则∠E等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•天门)如图,△ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC.若△ABC的边长为4,AE=2,则BD的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•天门)如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…当AB=n时,△AME的面积记为Sn.当n≥2时,Sn-Sn-1=
2n-1
2
2n-1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•天门)如图,海中有一小岛B,它的周围15海里内有暗礁.有一货轮以30海里/时的速度向正北航行,当它航行到A处时,发现B岛在它的北偏东30°方向,当货轮继续向北航行半小时后到达C处,发现B岛在它的东北方向.问货轮继续向北航行有无触礁的危险?(参考数据:
3
≈1.7,
2
≈1.4)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•天门)如图,AB是⊙O的直径,AC和BD是它的两条切线,CO平分∠ACD.
(1)求证:CD是⊙O的切线;
(2)若AC=2,BD=3,求AB的长.

查看答案和解析>>

同步练习册答案