精英家教网 > 初中数学 > 题目详情
12、如图,正方形ABCD的对角线相交于点O,AE平分∠BAC分别交DC、BC于点H、E,延长AB至点F,使BF=BE,连接CF,延长AE交CF于点G,连接OG.下列结论:①△ABE≌△CBF;②OG∥AB;③AH=HG;④以AG为直径的圆与CF相切.其中正确的个数有(  )
分析:①根据“SAS”可证明,故正确;
②由①可得∠F=∠AEB;又∠AEB+∠EAB=90°,所以∠F+∠BAE=90°,即AG⊥CF.根据“ASA”证明△FCG≌△CAG,得G是CF的中点.根据三角形中位线定理可得OG∥AB,故正确;
③因为AO=OC,若AH=HG,则OH∥CG;而OB∥EF,故错误;
④由②可证,故正确.
解答:解:①∵AB=BC,∠ABE=∠CBF=90°,BE=BF,
∴△ABE≌△CBF.故正确;
②∵△ABE≌△CBF,
∴∠AEB=∠F.
∵∠AEB+∠EAB=90°,
∴∠F+∠BAE=90°,
∴∠AGF=90°=∠AGC.
又∵∠CAG=∠FAG,AG公共边,
∴△FAG≌△CAG.
∴FG=CG.
∵AO=OC,
∴OG∥AB.故正确;
③∵AO=OC,若AH=HG,则OH∥CG.而OB∥EF,故错误;
④∵AG⊥CF,
∴以AG为直径的圆与CF相切.故正确.
所以正确的有①②④3个.
故选C.
点评:此题考查正方形的性质、全等三角形的判定及性质、三角形中位线定理、切线的判定方法等知识点,综合性较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案