精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象过(﹣2,0),则下列结论:①bc>0;②b+2a=0;③a+c>b;④16a+4b+c=0;⑤3a+c<0,其中正确结论的个数是( )

A.5
B.4
C.3
D.2

【答案】B
【解析】解:∵抛物线开口向上,

∴a>0,

∵抛物线的对称轴为直线x=﹣ =1,

∴b=﹣2a<0,

而抛物线与y轴的交点在x轴下方,

∴c<0,

∴bc>0,所以①正确;

∵b=﹣2a,

∴b+2a=0,所以②正确;

∵x=﹣1时,y<0,

∴a﹣b+c<0,即a+c<b,所以③错误;

∵二次函数y=ax2+bx+c(a≠0)的图象过(﹣2,0),且对称轴为直线x=1,

∴二次函数y=ax2+bx+c(a≠0)的图象过(4,0),

即x=4时,y=0,

∴16a+4b+c=0,所以④正确;

∵a﹣b+c<0,b=﹣2a,

∴a+2a+c<0,即3a+c<0,所以⑤正确.

所以答案是:B.

【考点精析】本题主要考查了二次函数图象以及系数a、b、c的关系的相关知识点,需要掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+6x轴、y轴分别交于EF.点E坐标为(-80),点A的坐标为(-60)

1)求k的值;

2)若点P(xy)是第二象限内的直线上的一个动点,当点P运动过程中,试写出三角形OPA的面积Sx的函数关系式,并写出自变量x的取值范围;

3)探究:当P运动到什么位置时,三角形OPA的面积为9,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是∠BAC平分线,点EAB上,且AE=AC,EFBCAC于点F,ADCE交于点G,与EF交于点H.

(1)证明:AD垂直平分CE;

(2)若∠BCE=40°,求∠EHD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.

(1)求证:△BGF≌△FHC;

(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10如图,已知ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F

1求证:ABE≌△CAD;2BFD的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:

(1)某镇今年1﹣5月新注册小型企业一共有家.请将折线统计图补充完整
(2)该镇今年4月新注册的小型企业中,只有2家是餐饮企业,现从4月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,ABC为等边三角形,AE=CDADBE相交于点P

1)求证:AEB≌△CDA

2)求BPQ的度数;

3)若BQADQPQ=6PE=2,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用反证法证明:两直线平行,同旁内角互补(填空).

已知:如图,l1l2l1l2都被l3所截.

求证:∠1+2=180°.

证明:假设∠1+2________180°. l1l2,∴∠1________3. ∵∠1+2 _______180°,∴∠3+2180°,这和________矛盾,∴假设∠1+2__________180°不成立,即∠1+2=180°.

查看答案和解析>>

同步练习册答案