精英家教网 > 初中数学 > 题目详情

【题目】某学校八年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置、二、三等奖和进步奖共四个奖项,赛后将八年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请报据图中的信息,解答下列问题:

(1)八年级(1)班共有 名学生;

(2)将条形图补充完整;在扇形统计图中,二等奖对应的扇形的圆心角度数

(3)如果该八年级共有800名学生,请估计荣获一、二、三等奖的学生共有多少名.

【答案】(1)50;(2)见解析;57.6°;(3)368.

【解析】

1)根据不得奖人数及其百分比可得总人数;

2)总人数乘以一等奖所占百分比可得其人数,补全图形,根据各项目百分比之和等于1求得二等奖所占百分比,再乘以360°即可得;

3)用总人数乘以荣获一、二、三等奖的学生占总人数的百分比即可.

解:(1)八年级(1)班共有 =50

(2)获一等奖人数为:50×10%=5()

补全图形如下:

∵获二等奖人数所长百分比为150%10%20%4%=16%

二等奖对应的扇形的圆心角度数是×16%=57.6

3(名)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,中,,连接,将绕点旋转,当(即)与交于一点(即)与交于一点时,给出以下结论:①;②;③;④的周长的最小值是.其中正确的是( )

A. ①②③B. ①②④C. ②③④D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知某市某种出租车收费标准如下:乘车里程不超过3公里的一律收费10元,乘车里程超过3公里的,超过部分按每公里1.8元加收.

1)如果有人乘该出租车行驶了8公里,那么他应付多少车费?

2)如果该人行驶了x(x>3)公里,他应付多少车费?

3)某游客乘出租车从A地到B地,付车费22.6元,试估算从A地到B地大约多少公里?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】指居民消费价格指数,反映居民家庭购买消费商品及服务的价格水平的变动情况. 的涨跌率在一定程度受到季节性因素和天气因素的影响.根据北京市年与涨跌率的统计图中的信息,请判断月份与月份,同月份比较涨跌率下降最多的月份是__________月;请根据图中提供的信息,预估北京市年第四季度涨跌率变化趋势是__________,你的预估理由是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的四个顶点分别在反比例函数(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.

(1)当m=4,n=20时.

①若点P的纵坐标为2,求直线AB的函数表达式.

②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.

(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】准备两张同样大小的正方形纸片.

1)取准备好的一张正方形纸片,将它的四周各剪去一个同样大小的正方形(如图1),再折合成一个无盖的长方体盒子.做成的长方体盒子的底面的边长为6cm,容积为108cm3,那么原正方形纸片的边长为多少?

2)取准备好的另一张一样的正方形纸片,这张纸片恰好可做成圆柱形食品罐侧面的包装纸(如图2,不计接口部分),求这个食品罐的底面圆的半径?(结果保留)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了响应上海市市政府绿色出行的号召减轻校门口道路拥堵的现状王强决定改父母开车接送为自己骑车上学.已知他家离学校7.5千米上下班高峰时段驾车的平均速度比自行车平均速度快15千米/小时骑自行车所用时间比驾车所用时间多小时求自行车的平均速度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.

(1)求抛物线的函数表达式;

(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;

(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,过点C的直线MNABDAB边上一点,过点DDEBC,交直线MNE,垂足为F,连接CDBE.

(1)求证:CEAD

(2)当DAB中点时,四边形BECD是什么特殊四边形?说明你的理由;

(3)若DAB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

查看答案和解析>>

同步练习册答案