精英家教网 > 初中数学 > 题目详情
13、如图所示,已知OE⊥OF,直线AB过点O,则∠BOF-∠AOE=
90°
;若∠AOF=2∠AOE,则∠BOF=
120°
分析:先过EO延长至C,根据对顶角相等,然后利用角的和差关系即可解题.
解答:解:过EO延长至C,如下图:
则∠AOE=∠BOC,
∴∠BOF-∠AOE=∠BOF-∠BOC=∠FOC=∠EOF=90°,

若∠AOF=2∠AOE,则3∠AOE=90°,
∴∠AOE=30°,
∴∠BOF=∠FOC+∠BOC=∠EOF+∠AOE,
∴∠BOF=3∠AOE+∠AOE=4∠AOE=120°.
故答案为:90°,120°.
点评:本题考查了角的计算,属于基础题,关键是利用角的和差关系解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知OE是∠AOC的平分线,OD是∠BOC的平分线.
(1)若∠AOC=120°,∠BOC=β,求∠DOE;
 

(2)若∠AOC=α,∠BOC=β(α>β),求∠BOE.
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知OE⊥OF,直线AB经过点O,若∠AOF=2∠AOE,则∠BOF=
120°
120°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,已知OE是∠AOC的平分线,OD是∠BOC的平分线.
(1)若∠AOC=120°,∠BOC=β,求∠DOE;______;
(2)若∠AOC=α,∠BOC=β(α>β),求∠BOE.______.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:填空题

如图所示:已知OE⊥OF直线AB经过点O,则∠BOF-∠AOE=(    ),若∠AOF=2∠AOE,则∠BOF=(    )。

查看答案和解析>>

同步练习册答案