【题目】在平面直角坐标系中,直线与双曲线相交于,两点,点坐标为(-3,2),点坐标为(n,-3).
(1)求一次函数和反比例函数的表达式;
(2)如果点是轴上一点,且的面积是5,求点的坐标.
(3)利用函数图象直接写出关于x的不等式的解集.
【答案】(1)一次函数表达式为y=-x-1;反比例函数表达式为y=-;(2)点P的坐标是(-3,0)或(1,0);(3)-3<x<0或x>0
【解析】
(1)将A坐标代入双曲线解析式中求出m的值,确定出双曲线的解析式,再将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;
(2)求得直线与x轴的交点是(-1,0),设点P的坐标是(a,0),则的底为|a+1|,利用三角形面积公式即可求得点P的坐标;
(3)根据一次函数与反比例函数的两交点A与B的横坐标以及0,将x轴分为四个范围,找出反比例图象在一次函数图象上方时x的范围即可.
(1)∵双曲线 (m≠0)过点A(-3,2),
∴m=-3×2=-6,
∴反比例函数表达式为.
∵点B(n,-3)在反比例函数的图象上,
∴n=2,B(2,-3).
∵点A(-3,2)与点B(2,-3)在直线y=kx+b上,
∴解得
∴一次函数表达式为y=-x-1;
(2)如解图,在x轴上任取一点P,连接AP,BP,由(1)知点B的坐标是(2,-3).
在y=-x-1中令y=0,解得x=-1,则直线与x轴的交点是(-1,0).
设点P的坐标是(a,0).
∵△ABP的面积是5,
∴·|a+1|·(2+3)=5,
则|a+1|=2,
解得a=-3或1.
则点P的坐标是(-3,0)或(1,0).
(3) 根据图象得: -3<x<0或x>0
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个顶点的坐标分别为A(﹣4,0),B(﹣3,﹣3),C(﹣1,﹣3).
(1)画出△ABC关于x轴对称的△ADE(其中点B,C的对称点分别为点D、E);
(2)画出△ABC关于原点成中心对称的△FGH(其中A、B、C的对称点分别为点F,G,H).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有( )
A. 2条 B. 4条 C. 5条 D. 6条
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.
(1)求与的函数关系式,并写出的取值范围;
(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB与反比例函数的图象交于点A已知点,点C是反比例函数的图象上的一个动点过点C作x轴的垂线,交直线AB于点D.
(1)求k的值.
(2)若,求的面积.
(3)在点C运动的过程中,是否存在点C,使?若存在,请求出点C的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.
(1)表示出所有可能出现的结果;
(2)小黄和小石做游戏,制定了两个游戏规则:
规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.
规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.
小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.
求证:BE=2CF;
试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线中,函数值y与自变量之间的部分对应关系如下表:
… | 0 | 1 | … | ||||
y | … | 0 | … |
(1)求该抛物线的表达式;
(2)如果将该抛物线平移,使它的顶点移到点M(2,4)的位置,那么其平移的方法是____________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com