精英家教网 > 初中数学 > 题目详情
如图,在△OAB中,CD∥AB,若OC:OA=1:2,则下列结论:
(1)
OD
OB
=
OC
OA
;(2)AB=2CD;(3)S△OAB=2S△OCD
其中正确的结论是(  )
分析:根据AB∥CD可得△ABO∽△DOC,即可得
OD
OB
=
OC
OA
=
CD
AB
=
1
2
,根据相似三角形面积的比等于相似比的平方,可得S△OCD=4S△OAB,即可判断各结论的正误.
解答:解:∵AB∥CD,
∴△ABO∽△DOC,
OD
OB
=
OC
OA
=
CD
AB
=
1
2

∴AB=2CD,
∴4S△OCD=S△OAB(相似三角形面积的比等于相似比的平方).
故结论(1)(2)正确.
故选A.
点评:本题考查了平行线的性质及平分线段成比例的性质,涉及到相似三角形的判定及性质,是一道小综合题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•泸州)如图,在△OAB中,C是AB的中点,反比例函数y=
k
x
 (k>0)在第一象限的图象经过A、C两点,若△OAB面积为6,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△OAB中,OA=OB,以点O为圆心的⊙0经过AB的中点C,直线AO与⊙0相交于点D、E,连接CD、CE.
(1)求证:AB是⊙0的切线;
(2)求证:△ACD∽△AEC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△OAB中,C是AB的中点,反比例函数y=
kx
(k>0)在第一象限的图象经过A,C两点,若△OAB面积为6,则k的值为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△OAB中,∠B=90°,∠BOA=30°,OA=4,将△OAB绕点O按逆时针方向旋转至△OA′B′,C点的坐标为(0,4).
(1)求A′点的坐标;
(2)求过C,A′,A三点的抛物线y=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(创新学习)如图,在△OAB中,∠B=90°,∠BOA=30°,OA=4,将△OAB绕点O按逆时针方向旋转至△OA′B′,C点的坐标为(0,4).
(1)求A′点的坐标;
 

(2)求过C,A′,A三点的抛物线y=ax2+bx+c的解析式;
 

(3)在(2)中的抛物线上是否存在点P,使以O,A,P为顶点的三角形是等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案