精英家教网 > 初中数学 > 题目详情
如图:在平面直角坐标系中,△ABC是等腰直角三角形,∠ACB=Rt∠,CA⊥x轴,垂足为点A.点B在反比例函数y1=
4
x
(x>0)
的图象上.反比例函数y2=
2
x
(x>0)
的图象
经过点C,交AB于点D,则点D的坐标是______.
设点C的坐标为(a,
2
a
),(a>0),
∵△ABC是等腰直角三角形,AC⊥x轴,
∴BC=AC=
2
a

∴点B的坐标为(a+
2
a
2
a
),
将点B的坐标代入y1=
4
x
(x>0)
,可得:
2
a
=
4
a+
2
a

解得:a=
2

故点A的坐标为(
2
,0),点B的坐标为(2
2
2
),
设直线AB的解析式为:y=kx+b,
将点A、点B的坐标代入可得:
2
k+b=0
2
2
k+b=
2

解得:
k=1
b=-
2

故直线AB的解析式为:y=x-
2

联立直线AB及反比例函数y2=
2
x
(x>0)
y=x-
2
y=
2
x

解得:
x=
2
+
10
2
y=
10
-
2
2

故点D的坐标为:(
2
+
10
2
10
-
2
2
).
故答案为:(
2
+
10
2
10
-
2
2
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

写出一个图象位于第一、三象限的反比例函数的表达式:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m),AB⊥x轴于B,Rt△AOB面积为3,若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,-
3
2
),
(1)求反比例函数的解析式和直线y=ax+b解析式;
﹙2﹚求△AOC的面积;
(3)在坐标轴上是否存在一点P,使△PAO为等腰三角形?若存在,请直接写出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点P是反比例函数y=
2
x
(x>0)的图象上的一个动点,PA⊥x轴于点A,延长AP至点B,使PB=PA,过点B作BC⊥y轴于点C,交反比例函数图象于点D.
(1)填空:S△AOP______S△COD(填“>“<”或“=”)
(2)当点P的位置改变时,四边形PODB的面积是否改变?说明理由.
(3)连接OB,交反比例函数y=
2
x
(x>0)的图象于点E,试求
OE
OB
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知圆柱的侧面积是6πcm2,若圆柱的底面半径为x(cm),高为ycm).
(1)写出y关于x的函数解析式;
(2)完成下列表格:

(3)在所给的平面直角坐标系中画出y关于x的函数图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知C、D是双曲线,y=
m
x
在第一象限内的分支上的两点,直线CD分别交x轴、y轴于A、B两点,设C、D的坐标分别是(x1,y1)、(x2,y2),连接OC、OD.
(1)求证:y1<OC<y1+
m
y1

(2)若∠BOC=∠AOD=a,tana=
1
3
,OC=
10
,求直线CD的解析式;
(3)在(2)的条件下,双曲线上是否存在一点P,使得S△POC=S△POD?若存在,请给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y1=kx+b的图象与反比例函数y2=
m
x
图象相交于A、B两点.
(1)求出这两个函数的解析式;
(2)结合函数的图象回答:当自变量x的取值范围满足什么条件时,y1<y2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知点A在反比例函数y=
4
x
的图象上,点B在反比例函数y=
k
x
(k≠0)
的图象上,
ABx轴,分别过点A、B作x轴作垂线,垂足分别为C、D,若OC=
1
3
OD
,则k的值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:P是反比例函数y=
k
x
(k>0)图象在第一象限上的一个动点,过P作x轴的垂线,垂足为M,已知△POM的面积为2.
(1)求k的值;
(2)若直线y=x与反比例函数y=
k
x
的图象在第一象限内交于点A,求过点A和点B(0,-2)的直线表达式;
(3)过A作AC⊥y轴于点C,若△ABC与△POM相似,求点P的坐标.

查看答案和解析>>

同步练习册答案