如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=120°.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.
(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)
(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)
(参考数据:sin60°=,cos60°=,tan60°=,≈26.851,可使用科学计算器)
【答案】解:(1)雨刮杆AB旋转的最大角度为180° .
连接OB,过O点作AB的垂线交BA的延长线于EH,
∵∠OAB=120°,
∴∠OAE=60°
在Rt△OAE中,
∵∠OAE=60°,OA=10,
∴sin∠OAE==,
∴OE=5,
∴AE=5.
∴EB=AE+AB=53,
在Rt△OEB中,
∵OE=5,EB=53,
∴OB===2≈53.70;
(2)∵雨刮杆AB旋转180°得到CD,即△OCD与△OAB关于点O中心对称,
∴△BAO≌△OCD,∴S△BAO=S△OCD,
∴雨刮杆AB扫过的最大面积S=π(OB2-OA2)
=1392π.
【考点解剖】 本题考查的是解直角三角形的应用,以及扇形面积的求法,难点是考生缺乏生活经验,弄不懂题意(提供的实物图也不够清晰,人为造成一定的理解困难).
【解题思路】 将实际问题转化为数学问题,(1)AB旋转的最大角度为180°;在△OAB中,已知两边及其夹角,可求出另外两角和一边,只不过它不是直角三角形,需要转化为直角三角形来求解,由∠OAB=120°想到作AB边上的高,得到一个含60°角的Rt△OAE和一个非特殊角的Rt△OEB.在Rt△OAE中,已知∠OAE=60°,斜边OA=10,可求出OE、AE的长,进而求得Rt△OEB中EB的长,再由勾股定理求出斜边OB的长;(2)雨刮杆AB扫过的最大面积就是一个半圆环的面积(以OB、OA为半径的半圆面积之差).
【解答过程】 略.
【方法规律】 将斜三角形转化为直角三角形求解.在直角三角形中,已知两边或一边一角都可求出其余的量.
【关键词】 刮雨器 三角函数 解直角三角形 中心对称 扇形的面积
科目:初中数学 来源: 题型:
| ||
2 |
1 |
2 |
3 |
721 |
查看答案和解析>>
科目:初中数学 来源:2013年初中毕业升学考试(江西卷)数学(解析版) 题型:解答题
如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=1200.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.
(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)
(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)
(参考数据:sin60°=,cos60°=,tan60°=,≈26.851,可使用科学计算器)
查看答案和解析>>
科目:初中数学 来源:2013年初中毕业升学考试(江西南昌卷)数学(解析版) 题型:解答题
如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=1200.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.
(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)
(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)
(参考数据:sin60°=,cos60°=,tan60°=,≈26.851,可使用科学计算器)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2013年江西省南昌市中考数学试卷(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com