【题目】如图,一次函数与反比例函数的图象交于点和.
(1)求反比例函数和一次函数的解析式;
(2)点是线段上一点,过点作轴于点,交反比例函数图象于点,连接、,若的面积为,求点的坐标.
【答案】(1)y=,y=﹣x+6;(2)P(3,3)
【解析】
(1)将B点坐标代入即可得出反比例函数y=(x>0),求得函数的解析式,进而求得A的坐标,再将A、B两点坐标分别代入y=kx+b,可用待定系数法确定一次函数的解析式;
(2)设P(m,m+6)且1≤m≤5,则Q(m,),求得PQ=m+6,根据三角形面积公式得到S△POQ=(﹣m+6﹣)m=2,解得即可.
解:(1)∵反比例函数y=(x>0)的图象经过点B(5,1)
∴1=, 解得k=5
∴反比例函数解析式为 y=
把A(a,5)代入y=,得a=1
点A坐标为(1,5)
∵一次函数解析式 y=kx+b 经过A(1,5),B(5,1)
∴ 解得:
∴一次函数解析式为:y=﹣x+6
(2)设P(m,﹣m+6)且1≤m≤5,则Q(m,)
∴PQ=﹣m+6﹣
∴S△POQ=(﹣m+6﹣)m=2
解得m1=m2=3
∴P(3,3)
科目:初中数学 来源: 题型:
【题目】某企业计划购买一些消毒液对厂区内进行消毒,有甲、乙两种型号的消毒液供选择,它们均按瓶销售,每瓶容量都相同.购买甲消毒液瓶和乙消毒液瓶,需元;购买瓶甲消毒液与购买瓶乙消毒液所需钱数相同.
(1)求甲、乙两种消毒液的单价各是多少元?
(2)现在企业决定只购买甲、乙消毒液中的一种即可,且甲消毒液按原价九折销售,乙消毒液购买瓶以上超出的部分按原价的六五折销售,设购买瓶甲消毒液需要元,购买瓶乙消毒液需要元,请用分别表示出和;
(3)在(2)的条件下,已知企业购买消毒液的数量多于瓶,问购买哪一种消毒液更省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的小正方形组成的网格中,给出了格点四边形ABCD(顶点为网格线的交点).
(1)画出四边形ABCD关于x轴成轴对称的四边形A1B1C1D1;
(2)以O为位似中心,在第三象限画出四边形ABCD的位似四边形A2B2C2D2,且位似比为1;
(3)在第一象限内找出格点P,使∠DCP=∠CDP,并写出点P的坐标(写出一个即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点O为△ABC的两条角平分线的交点,过点O作OD⊥BC,垂足为D,且OD=4.若△ABC的面积是34,则△ABC的周长为( )
A.8.5B.15C.17D.34
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数C:y=(x﹣2)2﹣2(0≤x≤3),点P在二次函数C的图象上,点A为x轴正半轴上一点,若tan∠AOP=1,则点P的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线C:y=x[a(x﹣1)+x+1](a为任意实数).
(1)无论a取何值,抛物线C恒过定点 , .
(2)当a=1时,设抛物线C在第一象限依次经过的整数点(横、纵坐标均为整数的点)为A1,A2,……An,将抛物线C沿着直线y=x(x≥0)平移,将平移后的抛物线记为C n,抛物线C n经过点An,C n的顶点坐标为Mn(n为正整数且n=1,2,…,n,例如n=1时,抛物线C1经过点A1,C1的顶点坐标为M1).
①抛物线C2的解析式为 ,顶点坐标为 .
②抛物线C1上是否存在点P,使得PM1∥A2M2?若存在,求出点P的坐标,并判断四边形PM1M2A2的形状;若不存在,请说明理由.
③直接写出Mn﹣1,Mn两顶点间的距离: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知二次函数图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.
(1)当m=5时,求n的值.
(2)当n=2时,若点A在第一象限内,结合图象,求当y时,自变量x的取值范围.
(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把△ABC放置在平面直角坐标系中,点A的坐标为(0,8),点B的坐标为(-6,0),点C的坐标为(8,0),M,N分别是线段AB,AC上的点,将△AMN沿直线MN翻折后,点A落在x轴上的A′处.
Ⅰ当MN∥x轴时,判断△A'CN的形状.
Ⅱ如图,当A'M⊥AB时.
①求A'的坐标;②求MN的长.
Ⅲ当△A'MB是等腰三角形时,直接写出A'的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com