15£®Èçͼ1£¬¾ØÐÎOABCµÄ±ßOA¡¢OC·Ö±ðÔÚ×ø±êÖáÉÏ£¬Bµã×ø±ê£¨1£¬$\sqrt{3}$£©£¬¾ØÐÎO¡äA¡äB¡äC¡äÊǾØÐÎOABCÈÆBµãÄæʱÕëÐýתµÃµ½µÄ£¬O¡äµãÇ¡ºÃÔÚxÖáµÄ×ø±êÖáÉÏ£¬O¡äA¡ä½»BCÓÚµãD£®

£¨1£©Ö±½ÓÌî¿Õ£º¢ÙO¡äµÄ×ø±êΪ£¨2£¬0£©£»¢Ú¡÷O¡äDBµÄÐÎ×´ÊǵÈÑüÈý½ÇÐΣ»
£¨2£©Èçͼ2£¬Á¬½ÓO¡äB½«¡÷O¡äBC¡äÑØxÖḺ°ëÖáÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏò×óƽÒÆ£¬µÃµ½¡÷O¡äB¡äC¡ä£¬µ±C¡äÔ˶¯µ½yÖáÉÏʱֹͣƽÒÆ£®Éè¡÷O¡äB¡äC¡äÓë¾ØÐÎOABCÖصþ²¿·ÖµÄÃæ»ýΪS£¬Ô˶¯Ê±¼äΪtÃ루t£¾0£©£¬ÇëÖ±½Óд³öSÓëtµÄº¯Êý¹Øϵʽ£¬²¢Ð´³ötµÄÈ¡Öµ·¶Î§£»
£¨3£©Èçͼ3£¬ÑÓ³¤BCµ½µãM£¬Ê¹CM=1£¬ÔÚÖ±ÏßA¡äO¡äÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃ¡÷POMÊÇÒÔÏ߶ÎOMΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÇó³öPµã×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝµÈÑüÈý½ÇÐÎÈýÏߺÏÒ»ÒÔ¼°È«µÈÈý½ÇÐεÄÐÔÖʼ´¿É½â¾öÎÊÌ⣮
£¨2£©·ÖËÄÖÖÇéÐΣ©¢ÙÈçͼ2ÖУ¬µ±0£¼t¡Ü1ʱ£¬Öصþ²¿·ÖÊÇ¡÷MNB¡ä£¬¢ÚÈçͼ3ÖУ¬µ±1£¼t$¡Ü\frac{3}{2}$ʱ£¬Öصþ²¿·ÖÊÇÎå±ßÐÎMNHGO¡ä£¬¢ÛÈçͼ4ÖУ¬µ±$\frac{3}{2}$£¼t¡Ü2ʱ£¬Öصþ²¿·ÖÊÇËıßÐÎMNC¡äO¡ä£¬¢ÜÈçͼ5ÖУ¬µ±2£¼t¡Ü$\frac{5}{2}$ʱ£¬Öصþ²¿·ÖÊÇ¡÷MNC¡ä£¬·Ö±ðÇó½â¼´¿É£®
£¨3£©·ÖÁ½ÖÖÇéÐÎÌÖÂÛ¼´¿ÉÈçͼ6ÖУ¬¢Ùµ±¡ÏPOM=90¡ãʱ£¬¢Úµ±¡ÏOMP¡ä=90¡ãʱ£®

½â´ð ½â£º£¨1£©¢ÙÁ¬½ÓOB¡¢O¡äB£¬
ÔòOB=O¡äB£¬
¡ßËıßÐÎOABC¾ØÐΣ¬
¡àBC¡ÍOC£¬
¡àCO=CO¡ä£¬
¡ßBµã×ø±ê£¨1£¬$\sqrt{3}$£©£¬
¡àOC=1£¬
¡àO¡äC=1£¬
¡àO¡ä£¨2£¬0£©£»
¢ÚÈçͼ1ÖУ¬¡÷O¡äDBÊǵÈÑüÈý½ÇÐΣ¬

ÀíÓÉÊÇ£º¡ß¡ÏA¡ä=¡ÏBCO¡ä=90¡ã£¬¡ÏA¡äDB=¡ÏCDO¡ä£¬A¡äB=O¡äC£¬
¡à¡÷BA¡äD¡Õ¡÷O¡äCD£¬
¡àBD=DO¡ä£¬
¡à¡÷O¡äDBÊǵÈÑüÈý½ÇÐΣ»
¹Ê´ð°¸Îª£¨2£¬0£©£¬µÈÑüÈý½ÇÐΣ®

£¨2£©¢ÙÈçͼ2ÖУ¬µ±0£¼t¡Ü1ʱ£¬Öصþ²¿·ÖÊÇ¡÷MNB¡ä£¬

S=$\frac{1}{2}$¡Á$\frac{2\sqrt{3}}{3}$t•t=$\frac{\sqrt{3}}{3}$t2£®
¢ÚÈçͼ3ÖУ¬µ±1£¼t$¡Ü\frac{3}{2}$ʱ£¬Öصþ²¿·ÖÊÇÎå±ßÐÎMNHGO¡ä£¬

S=S¡÷A¡äO¡äC¡ä-S¡÷A¡äGH-S¡÷MNC¡ä=$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$¡Á2¡Á$\frac{\sqrt{3}}{3}$£¨t-1£©2-$\frac{1}{2}$¡Á[1-2£¨t-2£©]¡Á$\frac{\sqrt{3}}{3}$[1-2£¨t-2£©]=-$\sqrt{3}$t2+4$\sqrt{3}$t-4$\sqrt{3}$£®
¢ÛÈçͼ4ÖУ¬µ±$\frac{3}{2}$£¼t¡Ü2ʱ£¬Öصþ²¿·ÖÊÇËıßÐÎMNC¡äO¡ä£¬

S=S¡÷O¡äB¡äC¡ä-S¡÷MNB¡ä=$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$¡Á2¡Á$\frac{\sqrt{3}}{3}$£¨t-1£©2=-$\frac{\sqrt{3}}{3}$t2+$\frac{2\sqrt{3}}{3}$t+$\frac{\sqrt{3}}{6}$£®
¢ÜÈçͼ5ÖУ¬µ±2£¼t¡Ü$\frac{5}{2}$ʱ£¬Öصþ²¿·ÖÊÇ¡÷MNC¡ä£¬

S=$\frac{1}{2}$¡Á[1-2£¨t-2£©]¡Á$\frac{\sqrt{3}}{3}$[1-2£¨t-2£©]=$\frac{2\sqrt{3}}{3}$t2-$\frac{10\sqrt{3}}{3}$t+$\frac{25\sqrt{3}}{6}$£®
×ÛÉÏËùÊöS=$\left\{\begin{array}{l}{\frac{\sqrt{3}}{3}{t}^{2}}&{£¨0£¼t¡Ü1£©}\\{-\sqrt{3}{t}^{2}+4\sqrt{3}t-4\sqrt{3}}&{£¨1£¼t¡Ü\frac{3}{2}£©}\\{-\frac{\sqrt{3}}{3}{t}^{2}+\frac{2\sqrt{3}}{3}t+\frac{\sqrt{3}}{6}}&{£¨\frac{3}{2}£¼t¡Ü2£©}\\{\frac{2\sqrt{3}}{2}{t}^{2}-\frac{1=\sqrt{3}}{3}t+\frac{25\sqrt{3}}{6}}&{£¨2£¼t¡Ü\frac{5}{2}£©}\end{array}\right.$£®

£¨3£©Èçͼ6ÖУ¬´æÔÚ£®

¢Ùµ±¡ÏPOM=90¡ãʱ£¬¡ßOC=CM=1£¬
¡à¡ÏCOM=45¡ã=¡ÏPOC£¬
¡àÖ±ÏßOP½âÎöʽΪy=x£¬
¡ßÖ±ÏßOAµÄ½âÎöʽΪy=-$\frac{\sqrt{3}}{3}$x+$\frac{2\sqrt{3}}{3}$£¬
ÓÉ$\left\{\begin{array}{l}{y=x}\\{y=-\frac{\sqrt{3}}{3}x+\frac{2\sqrt{3}}{3}}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=\sqrt{3}-1}\\{y=\sqrt{3}-1}\end{array}\right.$£¬
¡àµãP×ø±êΪ£¨$\sqrt{3}$-1£¬$\sqrt{3}$-1£©£®
¢Úµ±¡ÏOMP¡ä=90¡ãʱ£¬Ò×ÖªP¡äÓëO¡äÖغϣ¬
´ËʱµãP¡ä×ø±ê£¨2£¬0£©£¬
×ÛÉÏËùÊöµãP×ø±êΪ£¨2£¬0£©»ò£¨$\sqrt{3}$-1£¬$\sqrt{3}$-1£©£®

µãÆÀ ±¾Ì⿼²éËıßÐÎ×ÛºÏÌ⡢ȫµÈÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Ò»´Îº¯Êý¡¢¾ØÐεÄÐÔÖÊ¡¢µÈÑüÈý½ÇÐεÄÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»á»­ºÃͼÐΣ¬Ñ§»á·ÖÀàÌÖÂÛ£¬×¢Òâ×Ô±äÁ¿µÄÈ¡Öµ·¶Î§£¬²»ÄÜ©½â£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÓÃÒ»¸öƽÃæÈ¥½Ø¼¸ºÎÌ壬Èç¹û½ØÃæÐÎ×´ÊÇÔ²£¬ÄÇôÕâ¸ö¼¸ºÎÌå¿ÉÄÜÊÇÇòÌ壬Բ׶¡¢Ô²ÖùµÈ¼¸ºÎÌ壮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªÅ×ÎïÏßy=ax2+bx+cÓëxÖá½»ÓÚA£¨3£¬0£©¡¢B£¨-3£¬0£©Á½µã£¬ÄÇô·½³Ìax2+bx+c=0µÄ¸ùÊÇx=3»ò-3£¬Å×ÎïÏߵĶԳÆÖáÊÇx=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ä³Íæ¾ß¾­ÏúÉÌÓÃ3.2ÍòÔª¹º½øÁËÒ»ÅúÍæ¾ß£¬ÉÏÊкóÒ»¸öÐÇÆÚÇ¡ºÃÈ«²¿ÊÛÍ꣬¸Ã¾­ÏúÉÌÓÖÓÃ6.8ÍòÔª¹º½øµÚ¶þÅúÕâÖÖÍæ¾ß£¬Ëù¹ºÊýÁ¿ÊǵÚÒ»Åú¹º½øÊýÁ¿µÄ2±¶£¬µ«Ã¿Ì×½ø¼Û¶àÁË10Ôª£®
£¨1£©¸Ã¾­ÏúÉÌÁ½´Î¹²¹º½øÕâÖÖÍæ¾ß¶àÉÙÌ×£¿
£¨2£©ÈôµÚÒ»ÅúÍæ¾ßÊÛÍêºóµÄ×ÜÀûÈóÂÊΪ25%£¬¹º½øµÚ¶þÅúÍæ¾ßºóÓÉÓÚ½ø¼ÛÉÏÕÇ£¬×¼±¸µ÷Õû¼Û
¸ñ£¬·¢ÏÖÈôÿÌ×ÕǼÛ1Ôª£¬ÔòÿÐÇÆÚ»áÉÙÂô5Ì×£¬Îʸþ­ÏúÉ̵ڶþÅúÍæ¾ßÓ¦¸ÃÈçºÎ¶¨¼Û²ÅÄÜʹÀûÈó×î´ó£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ÒÑÖªµÈÑü¡÷ABCÖУ¬AC=BC£¬µãD¡¢E¡¢F·Ö±ðÊÇÏ߶ÎAC¡¢BC¡¢ADµÄÖе㣬Á¬½ÓFE¡¢ED£¬BFµÄÑÓ³¤Ïß½»EDµÄÑÓ³¤ÏßÓÚµãG£¬Á¬½ÓGC£®
£¨1£©ÇóÖ¤£ºEF¡ÎCG£»
£¨2£©ÈôAC=$\sqrt{2}$AB£¬ÇóÖ¤£ºAC=CG£»
£¨3£©Èçͼ2£¬ÈôCG=EG£¬Ôò$\frac{AC}{AB}$=$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑ֪ƽÐÐËıßÐÎABCDÖУ¬E£¬F·Ö±ðÊÇAB£¬ADÉϵĵ㣬EFÓë¶Ô½ÇÏßAC½»ÓÚP£¬Èô$\frac{AE}{EB}$=$\frac{1}{2}$£¬$\frac{AF}{FD}$=$\frac{2}{3}$£¬Ôò$\frac{{S}_{¡÷PAD}}{{S}_{¡÷PCE}}$µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{3}{7}$B£®$\frac{2}{3}$C£®$\frac{18}{13}$D£®$\frac{18}{7}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÓÿÆѧ¼ÇÊý·¨±íʾÏÂÁи÷СÌâÖеÄÁ¿
£¨1£©¹âµÄËÙ¶ÈÊÇ300000000Ã×/Ã룻
£¨2£©ÒøºÓϵÖеĺãÐÇÔ¼ÓÐ160000000000¸ö£»
£¨3£©µØÇòÀëÌ«Ñô´óÔ¼ÓÐÒ»ÒÚÎåǧÍòǧÃ×£»
£¨4£©ÔÂÇòÖÊÁ¿Ô¼Îª734734$\underset{\underbrace{00¡­0}}{13¸öÁã}$Íò¶Ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖª12ÏäÆ»¹û£¬ÒÔÿÏä10ǧ¿ËΪ±ê×¼£¬³¬¹ý10ǧ¿ËµÄÊý¼ÇΪÕýÊý£¬²»×ã10ǧ¿ËµÄÊý¼ÇΪ¸ºÊý£¬³ÆÖؼǼÈçÏ£º
+0.2£¬-0.2£¬+0.7£¬-0.3£¬-0.4£¬+0.6£¬0£¬-0.1£¬-0.6£¬+0.5£¬-0.2£¬-0.5£®
£¨1£©ÈôÿÏäÆ»¹ûµÄÖØÁ¿±ê׼Ϊ10¡À0.5£¨Ç§¿Ë£©£¬ÔòÕâ12ÏäÖÐÓÐ9ÏäÊÇ·ûºÏ±ê×¼µÄ£»
£¨2£©Çó12ÏäÆ»¹ûµÄƽ¾ùÖØÁ¿£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èô¹ØÓÚxµÄ·½³Ì-5£¨x+1£©=-11+xÓë·½³Ì8-a=2£¨x+1£©ÓÐÏàͬµÄ½â£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸