分析 (Ⅰ)连接OC,如图①,根据切线的性质得∠OCP=90°,再根据等腰三角形的性质得到∠OCA=∠CAB=32°,则利用三角形外角性质可计算出∠POC,然后利用互余计算∠P的度数;
(Ⅱ)如图②,根据垂径定理的推论,由点E为AC的中点得到OD⊥AC,则利用三角形外角性质得∠AOD=∠CAB+∠OEA=106°,再根据圆周角定理得到∠C=$\frac{1}{2}$∠AOD=53°,然后利用三角形外角性质可计算出∠DPA的度数.
解答 解:(Ⅰ)连接OC,如图①,
∵PC为切线,
∴OC⊥PC,
∴∠OCP=90°,
∵OA=OC,
∴∠OCA=∠CAB=32°,
∴∠POC=∠OCA+∠CAB=64°,
∴∠P=90°-∠POC=90°-64°=26°;
(Ⅱ)如图②,
∵点E为AC的中点,
∴OD⊥AC,
∴∠OEA=90°,
∴∠AOD=∠CAB+∠OEA=16°+90°=106°,
∴∠C=$\frac{1}{2}$∠AOD=53°,
∴∠DPA=∠BAC+∠C=16°+53°=69°.
点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理和圆周角定理.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com