精英家教网 > 初中数学 > 题目详情
13.在⊙O中,AB为直径,C为⊙O上一点.
(Ⅰ)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=32°,求∠P的大小;
(Ⅱ)如图②,D为优弧ADC上一点,且DO的延长线经过AC的中点E,连接DC与AB相交于点P,若∠CAB=16°,求∠DPA的大小.

分析 (Ⅰ)连接OC,如图①,根据切线的性质得∠OCP=90°,再根据等腰三角形的性质得到∠OCA=∠CAB=32°,则利用三角形外角性质可计算出∠POC,然后利用互余计算∠P的度数;
(Ⅱ)如图②,根据垂径定理的推论,由点E为AC的中点得到OD⊥AC,则利用三角形外角性质得∠AOD=∠CAB+∠OEA=106°,再根据圆周角定理得到∠C=$\frac{1}{2}$∠AOD=53°,然后利用三角形外角性质可计算出∠DPA的度数.

解答 解:(Ⅰ)连接OC,如图①,
∵PC为切线,
∴OC⊥PC,
∴∠OCP=90°,
∵OA=OC,
∴∠OCA=∠CAB=32°,
∴∠POC=∠OCA+∠CAB=64°,
∴∠P=90°-∠POC=90°-64°=26°;

(Ⅱ)如图②,
∵点E为AC的中点,
∴OD⊥AC,
∴∠OEA=90°,
∴∠AOD=∠CAB+∠OEA=16°+90°=106°,
∴∠C=$\frac{1}{2}$∠AOD=53°,
∴∠DPA=∠BAC+∠C=16°+53°=69°.

点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理和圆周角定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.如图,△ABC中,∠ABC=90°,AB=BC,点E、F在AC上,∠EBF=45°,若AE=1,CF=2,则AB的长为$\frac{3\sqrt{2}+\sqrt{10}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先化简,再求值:($\frac{1}{x+1}$-$\frac{1}{1-x}$)÷$\frac{{x}^{2}}{1-{x}^{2}}$,其中x=$\sqrt{2}$+1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若a=2,b=3,则$\frac{{{a^2}+{b^2}-2ab}}{{{b^2}-ab}}$的值为$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.计算a2•a4的结果等于a6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.有5张背面完全相同的卡片,正面分别写有$\sqrt{4}$,($\sqrt{2}$)0,$\sqrt{12}$,π,2-2.把卡片背面朝上洗匀后,从中随机抽取1张,其正面的数字是无理数的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知抛物线经过A(-2,0)B(-3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)若点E在抛物线的对称轴上,且A、O、D、E为顶点是四边形是平行四边形,求点D的坐标.
(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.某校在甲、乙两名同学中选拔一人参加襄阳广播电台举办“国学风,少年颂”襄阳首届少年儿童经典诵读大赛.在相同的测试条件下,两人3次测试成绩(单位:分)如下:甲:79,86,82;乙:88,79,90.从甲、乙两人3次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率是$\frac{4}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.先化简,再求值:($\frac{{x}^{2}}{x-1}$-x+1)+$\frac{4{x}^{2}-4x+1}{1-x}$,其中x=sin60°+tan45°.

查看答案和解析>>

同步练习册答案