精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,与y轴交于点M,与x轴交于点A和B.
(1)y=mx2+nx+p的解析式为______,试猜想出与一般形式抛物线y=ax2+bx+c关于y轴对称的二次函数解析式为______.
(2)A,B的中点是点C,则sin∠CMB=______.
(3)如果过点M的一条直线与y=mx2+nx+p图象相交于另一点N(a,b),a,b满足a2-a+m=0,b2-b+m=0,则点N的坐标为______.
(1)y=x2+6x+5的顶点为(-3,-4),
即y=mx2+nx+p的顶点的为(3,-4),
设y=mx2+nx+p=a(x-3)2-4,
y=x2+6x+5与y轴的交点M(0,5),
即y=mx2+nx+p与y轴的交点M(0,5).
即a=1,
所求二次函数为y=x2-6x+5.
猜想:
与一般形式抛物线y=ax2+bx+c关于y轴对称的二次函数解析式是y=ax2-bx+c.


(2)过点C作CD⊥BM.
抛物线y=x2-6x+5与x轴的交点A(1,0),B(5,0),与y轴交点M(0,5),AB中点C(3,0).
故△MOB,△BCD是等腰直角三角形,CD=
2
2
BC=
2

在Rt△MOC中,MC=
34

则sin∠CMB=
CD
MC
=
17
17


(3)设过点M(0,5)的直线为y=kx+b,则b=5.
y=kx+5
y=x2-6x+5

解得
x1=0
y1=5

x2=k+6
y2=k2+6k+5

则a=k+6,b=k2+6k+5,
由已知a,b是方程x2-x+m=0的解,故a+b=1.
即(k+6)+(k2+6k+5)=1,
化简k2+7k+10=0,则k1=-2,k2=-5.
点N的坐标是(4,-3)或(1,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(2口口少•荆门)9开4向上4抛物线与x轴交于g(m-2,口),B(m+2,口)两点,记抛物线顶点为C,且gC⊥BC.
(你)若m为常数,求抛物线4解析式;
(2)若m为小于口4常数,那么(你)中4抛物线经过怎么样4平移可以使顶点在坐标原点;
(右)设抛物线交三轴正半轴于下点,问是否存在实数m,使得△BO下为等腰三角形?若存在,求出m4值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在第一象限内,以
5
为半径的圆⊙M经过点A(-1,0),B(3,0),与y轴相交于点C.
(1)在所给的坐标系中作出⊙M,并求M点的坐标;
(2)求经过A、B、C三点的抛物线的解析式;
(3)若D为⊙M上的最低点,E为x轴上的任一点,则在抛物线上是否存在这样的点F,使得以点A、D、E、F为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,说出理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=x2-3x-4的图象交x轴于A、B两点.
(1)若点P在线段AB上运动,作PQ⊥x轴,交抛物线于点Q,求PQ的最大值;
(2)已知点D(5,6)在抛物线上,若点M在线段AD上运动,作MN⊥x轴,交抛物线于点N,求MN的最大值;
(3)在(2)的运动过程中,求△ADN面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,对称轴为x=3的抛物线y=ax2+2x与x轴相交于点B,O.
(1)求抛物线的解析式,并求出顶点A的坐标;
(2)连接AB,把AB所在的直线平移,使它经过原点O,得到直线l.点P是l上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;
(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边?若存在,直接写出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=x2+mx-2m2(m≠0).
(1)求证:该抛物线与x轴有两个不同的交点;
(2)过点P(0,n)作y轴的垂线交该抛物线于点A和点B(点A在点P的左边),是否存在实数m、n,使得AP=2PB?若存在,则求出m、n满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知矩形纸片OABC的长为4,宽为3,以长OA所在的直线为x轴,O为坐标原点建立平面直角坐标系;点P是OA边上的动点(与点O、A不重合),现将△POC沿PC翻折得到△PEC,再在AB边上选取适当的点D,将△PAD沿PD翻折,得到△PFD,使得直线PE、PF重合.
(1)若点E落在BC边上,如图①,求点P、C、D的坐标,并求过此三点的抛物线的函数关系式;
(2)若点E落在矩形纸片OABC的内部,如图②,设OP=x,AD=y,当x为何值时,y取得最大值?
(3)在(1)的情况下,过点P、C、D三点的抛物线上是否存在点Q,使△PDQ是以PD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是(  )
A.y=
2
25
x2
B.y=
4
25
x2
C.y=
2
5
x2
D.y=
4
5
x2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:以原点O为圆心、5为半径的半圆与y轴交于A、G两点,AB与半圆相切于点A,点B的坐标为(3,yB)(如图1);过半圆上的点C(xC,yC)作y轴的垂线,垂足为D;Rt△DOC的面积等于
3
8
xC2
(1)求点C的坐标;
(2)①命题“如图2,以y轴为对称轴的等腰梯形MNPQ与M1N1P1Q1的上底和下底都分别在同一条直线上,NPMQ,PQP1Q1,且NP>MQ.设抛物线y=a0x2+h0过点P、Q,抛物线y=a1x2+h1过点P1、Q1,则h0>h1”是真命题.请你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)为例进行验证;
②当图1中的线段BC在第一象限时,作线段BC关于y轴对称的线段FE,连接BF、CE,点T是线段BF上的动点(如图3);设K是过T、B、C三点的抛物线y=ax2+bx+c的顶点,求K的纵坐标yK的取值范围.

查看答案和解析>>

同步练习册答案