精英家教网 > 初中数学 > 题目详情
(9分)如图所示,在边长为1的正方形ABCD中,一直角三角尺PQR的直角顶点P在对角线AC上移动,直角边PQ经过点D,另一直角边与射线BC交于点E.
⑴试判断PE与PD的大小关系,并证明你的结论;
⑵连接PB,试证明:△PBE为等腰三角形;
⑶设AP=x,△PBE的面积为y,
①求出y关于x 函数关系式;
②当点P落在AC的何处时,△PBE的面积最大,此时最大值是多少?
证明:(1) 过点P作GF∥AB,分别交AD、BC于G、F. 如图所示.

∵ 四边形ABCD是正方形,
∴ 四边形ABFG和四边形GFCD都是矩形,
△AGP和△PFC都是等腰直角三角形………1分 
∴ GD=FC=FP,GP=AG=BF,∠PGD=∠PFE=90°
又∵∠1+∠3=∠2+∠3=90°∴∠1=∠2………2分 
又PF=GD,∠PFE =∠PGD=90°
∴ Rt△EFP≌Rt△PGD(ASA).           
∴ PE=PD………3分                         
(2)∵AD=AB ∠PAB=∠PAD=45° AP=AP
∴△APB≌△APD (SAS)………4分   
∴PB=PD
∴PE=PB
∴△PBE为等腰三角形 ………6分   
(3)①∵AP=x
,………7分        

()………8分   
.

∴当时,………9分     
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(本题满分10分)
如图,一艘轮船由A港沿北偏东方向航行10km至B港,再沿北偏西方向航行10km到达C港.
   (1)求A、C两港之间的距离(精确到1km)
(2)求点C相对于点A位置.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,Rt△ABC中,A=90,AB=4,AC=3,D在BC上运动(不与B、C重合),过D点分别向AB、Ac作垂线,垂足分别为E、F,则矩形AEDF的面积的最大值为___________。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题8分)利用一面长45米的墙,用80m长的篱笆围成一个矩形场地。
⑴怎样才能使矩形场地面积为750㎡?
⑵能否使所围矩形场地的面积为810㎡,为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(7分)如图,在梯形ABCD中,AD∥BC,AC、BD是对角线.过点D作DE
∥AC,交BC的延长线于点E.
(1)判断四边形ACED的形状并证明;
(2)若AC=DB,求证:梯形ABCD是等腰梯形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(6分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AE∥BC, DE∥AB.

证明:(1)AE=DC;
(2)四边形ADCE为矩形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

明德小学为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑两条宽度相同的道路,余下部分作草坪,现在有一位学生设计了如图所示的方案,求图中道路的宽是___________     米时,草坪面积为540平方米。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本小题满分10分)
(1)如果△ABC的面积是S,E是BC的中点,连接AE(如图1),则△AEC的面积是           
(2)在△ABC的外部作△ACD,F是AD的中点,连接CF(如图2),若四边形ABCD的面积是S,则四边形AECF的面积是            
(3)若任意四边形ABCD的面积是S,E、F分别是一组对边AB、CD的中点,连接AF,CE(如图3),则四边形AECF的面积是            

图1             图2                图3
拓展与应用
(1)若八边形ABCDEFGH的面积是100,K、M、N、O、P、Q分别是AB、BC、CD、EF、FG、GH的中点,连接KH、MG、NF、OD、PC、QB、(如图4),则图中阴影部分的面积是            
(2)四边形ABCD的面积是100,E、F分别是一组对边AB、CD上的点,且AE=AB,
CF=CD,连接AF,CE(如图5),则四边形AECF的面积是            
(3)(如图6)ABCD的面积是2,AB=a,BC=b,点E从点A出发沿AB以每秒v个单位长的速度向点B运动,点F从点B出发沿BC以每秒个单位长的速度向点C运动.E、F分别从点A、B同时出发,当其中一点到达端点时,另一点也随之停止运动.请问四边形DEBF的面积的值是否随着时间t的变化而变化?若不变,请写出这个值         ,并写出理由;若变化,说明是怎样变化的.

图4                  图5                     图6

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(8分).如图在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,猜一猜MN与BD的位置关系,再证明你的结论。

查看答案和解析>>

同步练习册答案