【题目】如图,已知等边△ABC,以AB为直径的圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.
(1)求证:DF是⊙O的切线;
(2)若AB=12,求FG的长;
(3)在(2)问条件下,求点D到FG的距离.
【答案】(1)证明见解析;(2);(3).
【解析】
(1)连接OD,证明OD∥AC,易得OD⊥DF;
(2)先求出CD的长,再利用△CDF是30°的直角三角形可求出CF的长,同理可利用△FGA中∠A的三角函数可求得FG的长;
(3)过D作DH⊥AB于H,利用△BDH是30°的直角三角形可求出BH的长,同理可求得AG,然后根据GH=AB-AG-BH求得即可.
(1)证明:连结OD,如图1,
∵△ABC为等边三角形,
∴∠C=∠A=∠B=60°.
而OD=OB,
∴△ODB是等边三角形,∠ODB=60°,
∴∠ODB=∠C,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切线.
(2)解:∵OD∥AC,点O为AB的中点,
∴OD为△ABC的中位线.
∴BD=CD=6.
在Rt△CDF中,∠C=60°,
∴∠CDF=30°,
∴CF=CD=3.
∴AF=AC﹣CF=12﹣3=9,
在Rt△AFG中,∵∠A=60°,
∴FG=AF×sinA=9×=.
(3)解:如图2,过D作DH⊥AB于H.
∵FG⊥AB,DH⊥AB,
∴FG∥DH,
在Rt△BDH中,∠B=60°,
∴∠BDH=30°,
∴BH=BD=3,
在Rt△AFG中,∵∠AFG=30°,
∴AG=AF=,
∵GH=AB﹣AG﹣BH=12﹣﹣3=,
∴点D到FG的距离是.
科目:初中数学 来源: 题型:
【题目】某校九年级有三个班,其中九年一班和九年二班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九年一班的满分率为70%,九年二班的满分率为80%.
(1)求九年一班和九年二班各有多少名学生.
(2)该校九年三班有45名学生,若九年级体育成绩的总满分率超过75%,求九年三班至少有多少名学生体育成绩是满分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).
(1)求抛物线的解析式;
(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.
(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:
①x1=2,x2=3; ②;
③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).
其中,正确结论的个数是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:梯形ABCD中,AD//BC,AB⊥BC,AD=3,AB=6,DF⊥DC分别交射线AB、射线CB于点E、F.
(1)当点E为边AB的中点时(如图1),求BC的长;
(2)当点E在边AB上时(如图2),联结CE,试问:∠DCE的大小是否确定?若确定,请求出∠DCE的正切值;若不确定,则设AE=x,∠DCE的正切值为y,请求出y关于x的函数解析式,并写出定义域;
(3)当△AEF的面积为3时,求△DCE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD,则下列结论错误的是( )
A. △ABD≌△ACE B. ∠ACE+∠DBC=45°
C. BD⊥CE D. ∠BAE+∠CAD=200°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,抛物线y=ax2+bx+c的对称轴为x=,与x轴的一个交点A(,0),抛物线的顶点B纵坐标1<yB<2,则以下结论:①abc<0;②b2-4ac>0;③3a-b=0;④4a+c<0;⑤<a<.其中正确结论的个数是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com