精英家教网 > 初中数学 > 题目详情

【题目】已知线段AB20,点CBA的延长线上,点D在直线AB上,AC12BD16,点M是线段CD的中点,则AM的长为_____

【答案】412

【解析】

D在线段AB上和DAB的延长线上两种情况,分别用ACCM表示出AM求解即可.

如图1,当D在线段AB上时,

AB20AC12

BCAB+AC32

BD16

CD16

∵点M是线段CD的中点,

CMCD8

AMACCM4

如图2,当DAB的延长线上时,

AB20AC12

BCAB+AC32

BD16

CDBC+BD48

∵点M是线段CD的中点,

CM CD24

AMCMAC241212

故答案为:412

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.

(1)求抛物线的表达式;

(2)当P位于y轴右边的抛物线上运动时,过点C作CF直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与OBC相似?并求出此时点P的坐标;

(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问PBC的面积S能否取得最大值?若能,请出最大面积S,并求出此时点P的坐标,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.如:如图,数轴上点A表示的数为﹣2,点B表示的数为8,则A、两点间的距离AB=|﹣2﹣8|=10,线段AB的中点C表示的数为=3,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).

(1)用含t的代数式表示:t秒后,点P表示的数为   ,点Q表示的数为   

(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;

(3)求当t为何值时,PQ=AB;

(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】红心食品店想网购一种花生包装袋,在网上搜索了两家网店(如图所示),已知这两家网店的这种花生包装袋质量相同,请看图回答下列问题:

1)假若红心食品店想购买个花生包装袋,那么在两家网店分别需要花多少钱(用含有的式子表示)?(提示:如需付运费时,运费只需付一次,即6元)

2)红心食品店打算一次购买200个花生包装袋,选择哪家网店更省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.

(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?

(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么丽商场至少需购进多少件A种商品?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE140°,将一直角三角板AOB的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t秒.

1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,求此时∠BOC的度数;

2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OAOCOD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请求出t的取值,若不存在,请说明理由;

3)若在三角板开始转动的同时,射线OC也绕O点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC平分∠BOD.直接写出t的值.(本题中的角均为大于0°且小于180°的角)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知P12).

1)在平面直角坐标系中描出点P(保留画图痕迹);

2)如果将点P向左平移3个单位长度,再向上平移1个单位长度得到点P',则点P'的坐标为 

3)点A在坐标轴上,若SOAP2,直接写出满足条件的点A的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题:

1)(﹣8+ 5﹣(﹣19

2

3

4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题情景】利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.

例如:张老师给小聪提出这样一个问题:

如图1,在ABC中,AB=3,AD=6,问ABC的高ADCE的比是多少?

小聪的计算思路是:

根据题意得:SABC=BCAD=ABCE.

从而得2AD=CE,

请运用上述材料中所积累的经验和方法解决下列问题:

(1)【类比探究】

如图2,在ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,

求证:BO平分角AOC.

(2)【探究延伸】

如图3,已知直线mn,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PAPB=2AB.

(3)【迁移应用】

如图4,EAB边上一点,EDAD,CECB,垂足分别为D,C,DAB=B,AB=,BC=2,AC=,又已知M、N分别为AE、BE的中点,连接DM、CN.求DEMCEN的周长之和.

查看答案和解析>>

同步练习册答案