精英家教网 > 初中数学 > 题目详情

【题目】ABC中,∠A=60°,∠ABC=45°AB=4,DAC上一动点,以BD为直径的⊙OBC于点E,交AB于点F,则EF的最小值是______.

【答案】3

【解析】

由垂线段的性质可知,当BDABC的边AC上的高时,直径BD最短,此时线段EF=2EH=2OEsinEOH=2OEsin45°,因此当半径OE最短时,EF最短,连接OEOF,过O点作OHEF,垂足为H,在RtADB中,解直角三角形求直径BD,由圆周角定理可知∠EOH=EOF=ABC=45°,在RtEOH中,解直角三角形求EH,由垂径定理可知EF=2EH

由垂线段的性质可知,当BDABC的边BC上的高时,直径BD最短,

如图,

连接OEOF,过O点作OHEF,垂足为H

∵在RtADB中,∠BAC=60°AB=4

BD=6,即此时圆的直径为6

由圆周角定理可知∠EOH=EOF=ABC=45°

∴在RtEOH中,EH=OEsinEOH=3×=

由垂径定理可知EF=2EH=3

故答案为:3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知的直径,的弦,的切线,切点为的延长线相交于点.

1)求证:的切线;

2)若,求的半径.

3)在(2)中的条件下,,将以点为中心逆时针旋转,求扫过的图形的面积(结果用表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,B的半径OA上的一点(不与端点重合),过点BOA的垂线交于点CD,连接ODE上一点,,过点C的切线l,连接OE并延长交直线l于点F.

1)①依题意补全图形.

②求证:∠OFC=ODC.

2)连接FB,若BOA的中点,的半径是4,求FB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.

a.该质量指标值对应的产品等级如下:

质量指标值

等级

次品

二等品

一等品

二等品

次品

说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀).

等级是次品为质量不合格.

b.甲企业样本数据的频数分布统计表如下(不完整).

c.乙企业样本数据的频数分布直方图如下.

甲企业样本数据的频数分布表

分组

频数

频率

2

0.04

m

32

n

0.12

0

0.00

合计

50

1.00

乙企业样本数据的频数分布直方图

d.两企业样本数据的平均数、中位数、众数、极差、方差如下:

平均数

中位数

众数

极差

方差

甲企业

31.92

32.5

34

15

11.87

乙企业

31.92

31.5

31

20

15.34

根据以上信息,回答下列问题:

1m的值为________,n的值为________.

2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为________;若乙企业生产的某批产品共5万件,估计质量优秀的有________万件;

3)根据图表数据,你认为________企业生产的产品质量较好,理由为______________.(从某个角度说明推断的合理性)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:

1 2 3

1)初步思考:

如图1 中,已知BC=4NBC上一点且,试说明:

2)问题提出:

如图2,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求的最小值.

3)推广运用:

如图3,已知菱形ABCD的边长为4,∠B60°,圆B的半径为2,点P是圆B上的一个动点,求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB为⊙O的直径.

1)如图a,点D 的中点,当弦BD=AC时,求∠A.

2)如图b,点D的中点,当AB=6,点EBD的中点时,求OE的长.

3)如图c,点D上任意一点(不与AC重合),若点C的中点,探求BDADCD之间的数量关系,直接写出你探求的结论,不要求证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(12)如图,在RtABC中,ACB90°AC8BC6CDAB于点D.P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.

(1)求线CD的长;

(2)CPQ的面积为S,求St之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得SCPQSABC9100?若存在,求出t的值;若不存在,说明理由;

(3)t为何值时,CPQ为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m,水流在离喷出口的水平距离1.25m处达到最高,密集的水滴在水面上形成了一个半径为3m的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面(  )

A.0.55B.C.D.0.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】商场销售服装,平均每天可售出件,每件盈利元,为扩大销售量,减少库存,该商场决定采取适当的降价措施,经调查发现,一件衣服降价元,每天可多售出件.

设每件降价元,每天盈利元,请写出之间的函数关系式;若商场每天要盈利元,同时尽量减少库存,每件应降价多少元?

每件降价多少元时,商场每天盈利达到最大?最大盈利是多少元?

查看答案和解析>>

同步练习册答案