精英家教网 > 初中数学 > 题目详情
(8分)如图,已知点D在△ABC的BC边上,DE//AC交AB于E,DF//AB交AC于F.

(1)求证:AE=DF;
(2)若添加条件_______,则四边形AEDF是矩形;
若添加条件_______,则四边形AEDF是菱形;
若添加条件_______,则四边形AEDF是正方形.
(8分)(1)证明:∵ DE∥AC   DF∥AB
∴四边形AEDF是平行四边形
∴ AE=DF               …… …… …… …… ……  5分
(2)答案不唯一,只要正确就给分,每空1分        ………… ……  8分
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

已知下列命题:
①对角线互相平分的四边形是平行四边形;②对角线互相垂直平分的四边形是菱形;
③对角线相等的四边形是矩形;④对角线相等的梯形是等腰梯形.其中真命题有( ▼ )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,大正方形中有2个小正方形,如果它们的面积分别是S1、S2,那么S1、S2的大小关系是
A.S1> S2B. S1 = S2
C. S1< S2D. S1、S2的大小关系不确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2011•海南)如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论 ①MN∥BC,②MN=AM,下列说法正确的是(  )

A、①②都对          B、①②都错
C、①对②错          D、①错②对

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(11·曲靖)(9分)如图,在梯形ABCD中,AD∥BC,E、F分别是两腰AB、
DC的中点,AF、BC的延长线交于点G.

(1) 求证:△ADF≌△GCF.
(2) 类比三角形中位线的定义,我们把EF叫做梯形ABCD的中位线.阅读填空:
在△ABG中:∵E中AB的中点
由(1)的结论可知F是AG的中点,
∴EF是△ABG的_______线

因此,可将梯形中位线EF与两底AD,BC的数量关系用文字语言表述为______________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(11·永州)(本题满分10分)探究问题:
⑴方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF="45° " ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,   ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.

⑵方法迁移:
如图②,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.

⑶问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(11·丹东)已知:如图,四边形ABCD是平行四边形,则图中相似的三角形有________对.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD的边长为2,点E是BC边的中点,过点B作BG⊥AE,
垂足为G,延长BG交AC于点F,则CF=         

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2011?滨州)将矩形ABCD沿AE折叠,得到如图所示图形.若∠CED′=56°,则∠AED的大小是 

查看答案和解析>>

同步练习册答案