精英家教网 > 初中数学 > 题目详情
如图,将一块边长为4cm的正方形纸片ABCD,叠放在一块足够大的直角三角板上(并使直角顶点落在A点),设三角板的两直角边分别与CD交于点F,与CB延长线交于点E,那么四边形AECF的面积为(  )
分析:由四边形ABCD为正方形可以得到∠D=∠B=90°,AD=AB,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE,所以可以证明△AEB≌△AFD,所以S△AEB=S△AFD,那么它们都加上四边形ABCF的面积,即可四边形AECF的面积=正方形的面积,从而求出其面积.
解答:解:∵四边形ABCD为正方形,
∴∠D=∠ABC=90°,AD=AB,
∴∠ABE=∠D=90°,
∵∠EAF=90°,
∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,
∴∠DAF=∠BAE,
∴△AEB≌△AFD,
∴S△AEB=S△AFD
∴它们都加上四边形ABCF的面积,
可得到四边形AECF的面积=正方形的面积=16.
故选C.
点评:本题考查了面积与等积变换的知识,解答本题要注意全等三角形的寻找,等线段的转化,应根据所给条件找到,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、如图,将一块边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点E,使DE=5,折痕为PQ,则PQ的长为
13

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,将一块边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点E,使DE=5,折痕为PQ,则PQ的长为(  )
A、12B、13C、14D、15

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将一块边长为8的正方形张片制作成一幅七巧板,并拼成右边的图案“一座桥”,则桥的中间阴影部分的面积为(  )

查看答案和解析>>

科目:初中数学 来源:2009-2010学年博文中学九年级(上)第一次月考数学试卷(解析版) 题型:填空题

如图,将一块边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点E,使DE=5,折痕为PQ,则PQ的长为   

查看答案和解析>>

同步练习册答案