精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,AD=AB,AD,BC的延长线相交于点E.

(1)求证:AD是半圆O的切线;

(2)连结CD,求证:∠A=2∠CDE;

(3)若∠CDE=27°,OB=2,求的长.

【答案】(1)证明见解析;(2)证明见解析;(3)

【解析】

试题分析:(1)连接OD,BD,根据圆周角定理得到∠ABO=90°,根据等腰三角形的性质得到∠ABD=∠ADB,∠DBO=∠BDO,根据等式的性质得到∠ADO=∠ABO=90°,根据切线的判定定理即可得到即可;

(2)由AD是半圆O的切线得到∠ODE=90°,于是得到∠ODC+∠CDE=90°,根据圆周角定理得到∠ODC+∠BDO=90°,等量代换得到∠DOC=2∠BDO,∠DOC=2∠CDE即可得到结论;

(3)根据已知条件得到∠DOC=2∠CDE=54°,根据平角的定义得到∠BOD=180°﹣54°=126°,然后由弧长的公式即可计算出结果.

试题解析:(1)证明:连接OD,BD,∵AB是⊙O的直径,∴AB⊥BC,即∠ABO=90°,∵AB=AD,∴∠ABD=∠ADB,∵OB=OD,∴∠DBO=∠BDO,∴∠ABD+∠DBO=∠ADB+∠BDO,∴∠ADO=∠ABO=90°,∴AD是半圆O的切线;

(2)证明:由(1)知,∠ADO=∠ABO=90°,∴∠A=360°﹣∠ADO﹣∠ABO﹣∠BOD=180°﹣∠BOD,∵AD是半圆O的切线,∴∠ODE=90°,∴∠ODC+∠CDE=90°,∵BC是⊙O的直径,∴∠ODC+∠BDO=90°,∴∠BDO=∠CDE,∵∠BDO=∠OBD,∴∠DOC=2∠BDO,∴∠DOC=2∠CDE,∴∠A=∠CDE;

(3)解:∵∠CDE=27°,∴∠DOC=2∠CDE=54°,∴∠BOD=180°﹣54°=126°,∵OB=2,∴的长==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连结DE.
(1)当∠BAD=60°,求∠CDE的度数;
(2)当点D在BC(点B、C除外)边上运动时,试写出∠BAD与∠CDE的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】-2的相反数是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PA,PB是O的切线,A,B为切点,点C在PB上,OCAP,CDAP于D

(1)求证:OC=AD;

(2)若P=50°,O的半径为4,求四边形AOCD的周长(精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两个直角∠AOB,∠COD有相同的顶点O,下列结论:①∠AOC=∠BOD;
②∠AOC+∠BOD=90°;③若OC平分∠AOB,则OB平分∠COD;④∠AOD的平分线与∠COB的平分线是同一条射线. 其中正确的个数有( )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答
(1)解不等式 >1﹣ ,并把它的解集在数轴上表示出来.
(2)一个长方形足球训练场的长为xm,宽为70m.如果它的周长大于350m,面积小于7560m2 , 请确定x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D、E、F分别是△ABC三边延长线上的点,则∠D+∠E+∠F+∠1+∠2+∠3=度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点P(3,4)关于y轴对称的点的坐标是(
A.(3,﹣4)
B.(﹣3,4)
C.(﹣4,﹣3)
D.(﹣4,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是( )

A. 2a2+a=3a3B. (m2)3=m5C. (x+y)2=x2+y2D. a6÷a3=a3

查看答案和解析>>

同步练习册答案