精英家教网 > 初中数学 > 题目详情
7.在△ABC中,∠C=90°,AC=6,BC=8,则高CD的长为4.8.

分析 根据题意画出图形,先由勾股定理求出AB的长,再由三角形的面积公式即可得出结论.

解答 解:如图,∵在△ABC中,∠C=90°,AC=6,BC=8,
∴AB=$\sqrt{{6}^{2}+{8}^{2}}$=10,
∴AD=$\frac{AC•BC}{AB}$=$\frac{6×8}{10}$=4.8.
故答案为:4.8.

点评 本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为(  )
A.65°B.65°或115°C.50°D.50°或115°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.数据3,5,4,5,6的中位数和众数分别是(  )
A.4,5B.5,5C.5,4D.4,6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.在$\frac{23}{7}$,3.141,$\sqrt{6}$,-3,$\root{3}{5}$,0,3.2,$\sqrt{25}$,$\frac{π}{6}$中是无理数的个数有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.方程2x-y=3和2x+y=9的公共解是(  )
A.$\left\{\begin{array}{l}{x=0}\\{y=-1}\end{array}\right.$B.$\left\{\begin{array}{l}{x=3}\\{y=-3}\end{array}\right.$C.$\left\{\begin{array}{l}{x=1}\\{y=7}\end{array}\right.$D.$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,矩形OABC在平面直角坐标系内(O为坐标原点),点A在x轴上,点C在y轴上,点B的坐标为(-4,-4$\sqrt{3}$),点E是BC的中点,现将矩形折叠,折痕为EF,点F为折痕与y轴的交点,EF交x轴于G且使∠CEF=60°.
(1)求证:△EFC≌△GFO;
(2)求点D的坐标;
(3)若点P(x,y)是线段EG上的一点,设△PAF的面积为s,求s与x的函数关系式并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解不等式组$\left\{\begin{array}{l}{2x+1>3(x-1)}\\{\frac{4-x}{3}≤x+2}\end{array}\right.$,并把它们的解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知点A的坐标是(0,5),每小格边长是1个单位.
①画出平面直角坐标系,并写出点B,C的坐标;
②连接AB,BC,CA,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打(  )
A.6折B.7折C.8折D.9折

查看答案和解析>>

同步练习册答案