精英家教网 > 初中数学 > 题目详情
如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B精英家教网的左侧),点B的横坐标是1;
(1)求a的值;
(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.
分析:(1)将B点坐标代入抛物线C1的解析式中,即可求得待定系数a的值.
(2)在抛物线平移过程中,抛物线的开口大小没有发现变化,变化的只是抛物线的位置和开口方向,所以C3的二次项系数与C1的互为相反数,而C3的顶点M与C1的顶点P关于原点对称,P点坐标易求得,即可得到M点坐标,从而求出抛物线C3的解析式.
解答:解:(1)∵点B是抛物线与x轴的交点,横坐标是1,
∴点B的坐标为(1,0),
∴当x=1时,0=a(1+2)2-5,
a=
5
9


(2)设抛物线C3解析式为y=a′(x-h)2+k,
∵抛物线C2与C1关于x轴对称,且C3为C2向右平移得到,
a′=-
5
9

∵点P、M关于点O对称,且点P的坐标为(-2,-5),
∴点M的坐标为(2,5),
∴抛物线C3的解析式为y=-
5
9
(x-2)2+5=-
5
9
x2+
20
9
x+
25
9
点评:此题主要考查的是二次函数解析式的确定、二次函数图象的几何变化以及系数与函数图象的关系,需要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;
(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线C1:y=a(x-2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点A的横坐标是-1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向左平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点A成中心对称时,求C3的解析式y=a(x-h)2+k;
(3)如图(2),点Q是x轴负半轴上一动点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、E为顶点的三角形是直角三角形时,求顶点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线c1:y=-
14
x2+bx+c
与x轴交于点A、B(点A在B的左侧),与y轴交于点C,抛物线c2与抛物线c1关于y轴对称,点A、B的对称点分别是E、D,连接CD、CB,设AD=m.
(1)抛物线c2可以看成抛物线c1向右平移
m
m
个单位得到.
(2)若m=2,求b的值.
(3)将△CDB沿直线BC折叠,点D的对应点为G,且四边形CDBG是平行四边形,
①△CDB为
等边
等边
三角形(按边分);
②若点G恰好落在抛物线c2上,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线C1y=
12
x2
,把它平移后得抛物线C2,使C2经过点A(0,8),且与抛物线C1交于点B(2,n).在x轴上有一点P,从原点O出发以每秒1个单位的速度沿x轴正半轴的方向移动,设点P移动的时间为t秒,过点P作x轴的垂线l,分别交抛物线C1、C2于E、D,当直线l经过点B前停止运动,以DE为边在直线l左侧画正方形DEFG.
(1)判断抛物线C2的顶点是否在x轴上,并说明理由;
(2)当t为何值时,正方形DEFG在y轴右侧的部分的面积S有最大值?最大值为多少?
(3)设M为正方形DEFG的对称中心.当t为何值时,△MOP为等腰三角形?

查看答案和解析>>

同步练习册答案